

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find contiguous unmasked data in a masked array along the given axis in Numpy
To find contiguous unmasked data in a masked array along the given axis, use the numpy.ma.notmasked_contiguous in Python Numpy. The method returns a list of slices (start and end indexes) of unmasked indexes in the array. If the input is 2d and axis is specified, the result is a list of lists
The axis is the axis along which to perform the operation. If None (default), applies to a flattened version of the array, and this is the same as flatnotmasked_contiguous.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)
Get the dimensions of the Array −
print("\nArray Dimensions...\n",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)
Get the dimensions of the Masked Array −
print("\nOur Masked Array Dimensions...\n",maskArr.ndim)
Get the shape of the Masked Array −
print("\nOur Masked Array Shape...\n",maskArr.shape)
Get the number of elements of the Masked Array −
print("\nElements in the Masked Array...\n",maskArr.size)
Return a boolean indicating whether the data is contiguous −
print("\nCheck whether the data is contiguous?\n",maskArr.iscontiguous())
To find contiguous unmasked data in a masked array along the given axis, use the numpy.ma.notmasked_contiguous:
print("\nResult...\n",np.ma.notmasked_contiguous(maskArr, axis = 0))
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # Return a boolean indicating whether the data is contiguous print("\nCheck whether the data is contiguous?\n",maskArr.iscontiguous()) # To find contiguous unmasked data in a masked array along the given axis, use the numpy.ma.notmasked_contiguous in Python Numpy print("\nResult...\n",np.ma.notmasked_contiguous(maskArr, axis = 0))
Output
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [-- 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Check whether the data is contiguous? True Result... [[slice(2, 4, None)], [slice(1, 2, None)], [slice(0, 4, None)]]
- Related Questions & Answers
- Find contiguous unmasked data in a masked array along axis 1 in Numpy
- Find contiguous unmasked data in a masked array in Numpy
- Repeat elements of a masked array along given axis in NumPy
- Count the non-masked elements of the masked array along the given axis in Numpy
- Compute the maximum of the masked array elements along a given axis in Numpy
- Compute the minimum of the masked array elements along a given axis in Numpy
- Return the variance of the masked array elements along given axis in Numpy
- Return the standard deviation of the masked array elements along given axis in NumPy
- Return range of values from a masked array along a given axis in NumPy
- Return a view of the masked array with axes transposed along given axis in NumPy
- Sort the masked array in-place along last axis in NumPy
- Sort the masked array in-place along axis 0 in NumPy
- Sort the masked array in-place along axis 1 in NumPy
- Repeat elements of a masked array along axis 1 in NumPy
- Repeat elements of a masked array along axis 0 in NumPy