- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Divide masked array elements by a given scalar element and return arrays with Quotient and Remainder in NumPy
To divide masked array elements by a given scalar element and return arrays with Quotient and Remainder, use the ma.MaskedArray.__divmod__() method in Python Numpy. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[85, 68, 81, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 67, 85]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
The scalar −
val = 5 print("
The given value...
",val)
To divide masked array elements by a given scalar element and return arrays with Quotient and Remainder, use the ma.MaskedArray.__divmod__() method −
print("
Resultant Arrays...
",maskArr.__divmod__(val))
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[85, 68, 81, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 67, 85]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # The scalar val = 5 print("
The given value...
",val) # To divide masked array elements by a given scalar element and return arrays with Quotient and Remainder, # use the ma.MaskedArray.__divmod__() method print("
Resultant Arrays...
",maskArr.__divmod__(val))
Output
Array... [[85 68 81 84] [67 33 39 53] [29 88 51 37] [56 45 67 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81 84] [67 33 -- 53] [29 88 51 --] [56 -- 67 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 The given value... 5 Resultant Arrays... (masked_array( data=[[--, --, 16, 16], [13, 6, --, 10], [5, 17, 10, --], [11, --, 13, 17]], mask=[[ True, True, False, False], [False, False, True, False], [False, False, False, True], [False, True, False, False]], fill_value=999999), masked_array( data=[[--, --, 1, 4], [2, 3, --, 3], [4, 3, 1, --], [1, --, 2, 0]], mask=[[ True, True, False, False], [False, False, True, False], [False, False, False, True], [False, True, False, False]], fill_value=999999))
- Related Articles
- Divide a given scalar element with masked array elements and return arrays with Quotient and Remainder in NumPy
- Divide a scalar value into every element of a masked Array and return the floor value in NumPy
- Divide every element of a masked Array into a scalar value and return the floor value in NumPy
- Return element-wise quotient and remainder simultaneously in Python Numpy
- Divide a scalar value into every element of a masked Array with __truediv__() in NumPy
- Divide every element of a masked Array into a scalar value with __rtruediv__() in NumPy
- True Divide each element of a masked Array by a scalar value in-place in Numpy
- AND every element of a masked array by a given scalar value using __iand__() in Numpy
- Divide a scalar value into every element of a masked Array in NumPy
- Add a scalar value to each element and return a new masked array in NumPy
- Subtract every element from a scalar value and return a new masked Array in NumPy
- Left Shift every element of a masked array by a given scalar value in NumPy
- Left Shift a given scalar value by every element of a masked array in NumPy
- XOR every element of a masked array by a given scalar value using __ixor__() in Numpy
- Raise each and every element of a masked array to a given scalar value in NumPy
