- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Determination of Specific Energy Output of an Electric Train
Energy output is the energy required for the propulsion of a train, it is mainly for accelerating the train from the rest to maximum velocity (Vm) and the energy required to overcome the gradient and track resistance to motion.
The specific energy output is defined as −
$$\mathrm{Specific\: Energy\: Output\mathrm{\: =\: }\frac{Energy\: output\: in \: watt \: hours}{Weight\: of\: train\: in\: tons\times distance\: of\: run\: in \: km}}$$
The specific energy output is measured in watt-hours per ton-km. The specific energy output is used for comparing the dynamic performances of trains operating to different schedules.
Determination of Specific Energy Output of an Electric Train
Assume the run of the train according to the simplified trapezoidal speed-time curve as shown in the figure.
Consider a track having a gradient of G% throughout its run. Then,
Energy output to accelerate the train from rest to a speed 𝑽𝒎 (say 𝐸1) −
$$\mathrm{\mathit{E_{\mathrm{1}}}\mathrm{\: =\: }\frac{1}{2}\frac{\mathit{F_{t}V_{m}}}{3600}\times \frac{\mathit{t_{\mathrm{1}}}}{3600}\: kWh}$$
Where, 𝐹𝑡 is the tractive effort.
$$\mathrm{\mathit{\Rightarrow E_{\mathrm{1}}}\mathrm{\: =\: }\frac{1}{2}\frac{\mathit{F_{t}V_{m}}}{3600}\times \frac{\mathit{V_{m}}}{3600\alpha }\: kWh}\; \; \left ( \because \mathit{t_{\mathrm{1}}\mathrm{\: =\: }\frac{V_{m}}{\alpha }} \right )$$
$$\mathrm{\mathit{\because F_{t}}\mathrm{\: =\: }277.8\mathit{W_{e}\alpha \mathrm{\: +\: }\mathrm{98.1}WG\mathrm{\: +\: }W.r}}$$
$$\mathit{\therefore E_{\mathrm{1}}\mathrm{\: =\: }\mathrm{\frac{1}{2}}\times \frac{V_{m}^{\mathrm{2}}}{\mathrm{\left ( 3600 \right )^{2}}\alpha }\left [ \mathrm{277.8}W_{e}\alpha \mathrm{\: +\: }\mathrm{98.1}WG\mathrm{\: +\: }W\cdot r \right ]\; \; \mathrm{kWh …(1)}}$$
Energy output to run the train at the speed 𝑽𝒎 against gradient and resistance to motion (say 𝐸2) −
$$\mathrm{\mathit{E_{\mathrm{2}}\mathrm{\: =\: }\frac{F_{t}^{'}V_{m}}{\mathrm{3600}}\times \frac{t_{\mathrm{2}}}{\mathrm{3600}}}\; kWh}$$
$$\mathrm{\because Distance\: travelled\: during\: free \: run,\mathit{S^{'}\mathrm{\: =\: }\frac{V_{m}t_{\mathrm{2}}}{\mathrm{3600}}}}$$
$$\mathrm{\therefore \mathit{E_{\mathrm{2}}\mathrm{\: =\: }\frac{F_{t}^{'}\times S'}{\mathrm{3600}}}\;kWh }$$
$$\mathrm{\Rightarrow \mathit{E_{\mathrm{2}}\mathrm{\: =\: }\left [ \mathrm{98.1\, WG\mathrm{\: +\: }W\cdot r} \right ]\times \frac{s'}{\mathrm{3600}}}\; kWh\; \; \cdot \cdot \cdot \left ( 2 \right )}$$
Thus, the total energy output for the run is given by,
$$\mathit{ E\mathrm{\: =\: }\left\{\mathrm{\frac{1}{2}}\times \frac{V_{m}^{\mathrm{2}}}{\mathrm{\left ( 3600 \right )^{2}}\alpha }\left [ \mathrm{277.8}W_{e}\alpha \mathrm{\: +\: }\mathrm{98.1}WG\mathrm{\: +\: }W\cdot r \right ]\mathrm{\: +\: }\left [ \mathrm{98.1}WG\mathrm{\: +\: }W\cdot r \right ]\times \frac{s'}{\mathrm{3600}}\; \right\}\mathrm{kWh}}$$
$$\mathit{\Rightarrow E\mathrm{\: =\: }\left\{ \frac{V_{m}^{\mathrm{2}}\times \mathrm{1000}}{\mathrm{\mathrm{2}\alpha\left ( 3600 \right )^{2}} }\left [ \mathrm{277.8}W_{e}\alpha \mathrm{\: +\: }\mathrm{98.1}WG\mathrm{\: +\: }W\cdot r \right ]\mathrm{\: +\: }\left [ \mathrm{98.1}WG\mathrm{\: +\: }W\cdot r \right ]\times \frac{s'\times \mathrm{1000}}{\mathrm{3600}}\; \mathrm{Wh} \right\}}$$
$$\mathit{\Rightarrow E\mathrm{\: =\: }\frac{V_{m}^{\mathrm{2}}}{\mathrm{2}\alpha}\times \frac{\mathrm{1000}}{\mathrm{\left ( 3600 \right )^{2}} }\times \mathrm{277.8}W_{e}\alpha \mathrm{\: +\: }\frac{V_{m}^{\mathrm{2}}}{\mathrm{2}\alpha}\times \frac{\mathrm{1000}}{\mathrm{\left ( 3600 \right )^{2}} } \left [ \mathrm{98.1}WG\mathrm{\: +\: }W\cdot r \right ]\mathrm{\: +\: }\left [ \mathrm{98.1}WG\mathrm{\: +\: }W\cdot r \right ]\times \frac{s'\times \mathrm{1000}}{\mathrm{3600}} }$$
$$\mathrm{\Rightarrow \mathit{E\mathrm{\: =\: }\mathrm{0.01072}V_{m}^{\mathrm{2}}W_{e}\mathrm{\: +\: }\left [ \mathrm{98.1}WG\mathrm{\: +\: }W\cdot r\right ] \left [ \frac{V_{m}^{\mathrm{2}}}{\mathrm{2 \alpha \times 3600}}\mathrm{\: +\: }S^{'} \right ]\times \mathrm{\frac{1000}{3600}}}}$$
$$\mathrm{\Rightarrow \mathit{E\mathrm{\: =\: }\mathrm{0.01072}V_{m}^{\mathrm{2}}W_{e}\mathrm{\: +\: }\left [ \mathrm{98.1}WG\mathrm{\: +\: }W\cdot r\right ] \left [ S^{"}\mathrm{\: +\: }S^{'} \right ]\times \mathrm{\frac{1000}{3600}}}}$$
Where, 𝑆" is the distance travelled during accelerating period.
Now, if 𝑆1 = 𝑆" + 𝑆′ is the distance travelled during the acceleration and free run in km. Then, we have,
$$\mathrm{\Rightarrow \mathit{E\mathrm{\: =\: }\mathrm{0.01072}V_{m}^{\mathrm{2}}W_{e}\mathrm{\: +\: }\mathrm{0.2778} \left [ \mathrm{98.1}WG\mathrm{\: +\: }W\cdot r\right ] S_{\mathrm{1}}}\: \: \cdot \cdot \cdot \left ( 3 \right )}$$
Therefore, from the definition of the specific energy output, we get,
$$\mathrm{Specific\: enrgy\: output=\frac{0.01072\, \mathit{V{_{m}}^{\mathrm{2}}W_{e}}+0.2778\left [ 98.1\mathit{WG+W \cdot r} \right ]\times \mathit{S}_{1}}{\mathit{W\times S}}}$$
$$\mathrm{Specific\: enrgy\: output \mathrm{\: =\: } \mathit{\frac{\mathrm{0.01072}V_{m}^{\mathrm{2}}}{S}\times \frac{W_{e}}{W}\mathrm{\: +\: }\mathrm{0.2778}\frac{S_{\mathrm{1}}}{S}\left ( \mathrm{98.1}G\mathrm{\: +\: }r \right )\; \; \cdot \cdot \cdot }\left ( 4 \right )}$$
If the track is level one, i.e., G = 0, then the specific energy output is,
$$\mathrm{Specific\: enrgy\: output \mathrm{\: =\: } \mathit{\frac{\mathrm{0.01072}V_{m}^{\mathrm{2}}}{S}\times \frac{W_{e}}{W}\mathrm{\: +\: }\mathrm{0.2778}\, \frac{S_{\mathrm{1}}}{S}\, r\; \; \cdot \cdot \cdot }\left ( 5 \right )}$$
- Related Articles
- Electric Traction: Power Output and Energy Output at Driving Axles
- Factors Affecting the Schedule Speed of an Electric Train
- Crest Speed, Average Speed & Schedule Speed of an Electric Train
- What is Specific Energy Consumption in Electric Traction?
- Derive An Expression For Electric Energy
- Why conservation of Electric Energy is important ?
- If an electric iron of $1200\ W$ is used for $30$ minutes everyday, find electric energy consumed in the month of April.
- Determination Of Income And Employment
- Determination Of The Exchange Rate
- An electric heater uses 600 kJ of electrical energy in 5 minutes. Calculate its power rating.
- (a) Name one device which works on the magnetic effect of current.(b) Name one device which works on the phenomenon of electromagnetic induction. (c) Which device converts electric energy into mechanical energy? (d) Describe the principle of working of an electric motor. (e) Explain the principle of working of an electric generator.
- Determination of Synchronous Motor Excitation Voltage
- What is an Individual Electric Drive? (Types of Electric Drive)
- An electric iron of 500 w power is used for 10 hours. The electrical energy consumed is ___________________ kWhÂ
- Income Determination
