

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
C++ Program to Implement Euler Theorem
This is a C++ Program which demonstrates the implementation of Euler Theorem. The number and modular must be coprime for the modular multiplicative inverse to exist.
Algorithm
Begin Take input to find modular multiplicative inverse Take input as modular value Perform inverse array function: modInverse(x + 1, 0); modInverse[1] = 1; for i = 2 to x modInverse[i] = (-(y / i) * modInverse[y mod i]) mod y + y return modInverse End
Example Code
#include <iostream> #include <vector> using namespace std; vector<int> inverseArray(int x, int y) { vector<int> modInverse(x + 1, 0); modInverse[1] = 1; for (int i = 2; i <= x; i++) { modInverse[i] = (-(y / i) * modInverse[y % i]) % y + y; } return modInverse; } int main() { vector<int>::iterator it; int a, m; cout<<"Enter number to find modular multiplicative inverse: "; cin>>a; cout<<"Enter Modular Value: "; cin>>m; cout<<inverseArray(a, m)[a]<<endl; }
Output
Enter number to find modular multiplicative inverse: 26 Enter Modular Value: 7 7
- Related Questions & Answers
- C++ Program to Implement Fermat’s Little Theorem
- C++ Program to Implement the Vizing’s Theorem
- What is Euler’s Theorem in Information Security?
- C++ Program for Zeckendorf's Theorem?
- C++ Program to Implement Vector
- C# program to implement FizzBuzz
- C++ Program to Implement Stack
- C++ Program to Implement Dequeue
- C++ Program to Implement Queue
- C++ Program to Implement Treap
- C++ Program to Implement Trie
- C++ Program to Implement Sparse Matrix
- C++ Program to Implement Sorted Array
- C++ Program to Implement Parallel Array
- C++ Program to Implement Circular Queue
Advertisements