C++ program to find the probability of a state at a given time in a Markov chain

C++Server Side ProgrammingProgramming

In this article, we will be discussing a program to find the probability of reaching from the initial state to the final state in a given time period in Markov chain.

Markov chain is a random process that consists of various states and the associated probabilities of going from one state to another. It takes unit time to move from one state to another.

Markov chain can be represented by a directed graph. To solve the problem, we can make a matrix out of the given Markov chain. In that matrix, element at position (a,b) will represent the probability of going from state ‘a’ to state ‘b’.

This would leave to a recursive approach to the probability distribution using the formula

P(t) = Matrix * P(t-1)

Example

 Live Demo

#include <bits/stdc++.h>
using namespace std;
#define float_vec vector<float>
//to multiply two given matrix
vector<float_vec > multiply(vector<float_vec > A, vector<float_vec > B, int N) {
   vector<float_vec > C(N, float_vec(N, 0));
   for (int i = 0; i < N; ++i)
      for (int j = 0; j < N; ++j)
         for (int k = 0; k < N; ++k)
            C[i][j] += A[i][k] * B[k][j];
   return C;
}
//to calculate power of matrix
vector<float_vec > matrix_power(vector<float_vec > M, int p, int n) {
   vector<float_vec > A(n, float_vec(n, 0));
   for (int i = 0; i < n; ++i)
      A[i][i] = 1;
   while (p) {
      if (p % 2)
         A = multiply(A, M, n);
      M = multiply(M, M, n);
      p /= 2;
   }
   return A;
}
//to calculate probability of reaching from initial to final
float calc_prob(vector<float_vec > M, int N, int F, int S, int T) {
   vector<float_vec > matrix_t = matrix_power(M, T, N);
   return matrix_t[F - 1][S - 1];
}
int main() {
   vector<float_vec > G{
      { 0, 0.08, 0, 0, 0, 0 },
      { 0.33, 0, 0, 0, 0, 0.62 },
      { 0, 0.06, 0, 0, 0, 0 },
      { 0.77, 0, 0.63, 0, 0, 0 },
      { 0, 0, 0, 0.65, 0, 0.38 },
      { 0, 0.85, 0.37, 0.35, 1.0, 0 }
   };
   //number of available states
   int N = 6;
   int S = 4, F = 2, T = 100;
   cout << "Probability of reaching: " << F << " in time " << T << " after starting from: " << S << " is " << calc_prob(G, N, F, S, T);
   return 0;
}

Output

Probability of reaching: 2 in time 100 after starting from: 4 is 0.271464
raja
Published on 03-Oct-2019 15:42:49
Advertisements