Suppose we have a list of vertices, and their degrees are given. We have to generate one undirected graph from that degree sequence. It will not include loop or multiple edges. So if the degree sequence is like [2, 2, 1, 1], then the graph can be like
To solve this, we will follow these steps −
Define adjacency matrix adj to store the graph
for each vertex i, do
for each vertex j that is valid, and next to i
if the degree of vertex i and j are more than zero, then connect them
display the matrix.
#include <iostream> #include <iomanip> using namespace std; void generateGraph(int vert_degree[], int n) { int adj_mat[n][n]; for(int i = 0; i<n; i++){ for(int j = 0; j < n; j++){ adj_mat[i][j] = 0; } } for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (vert_degree[i] > 0 && vert_degree[j] > 0) { vert_degree[i]--; vert_degree[j]--; adj_mat[i][j] = adj_mat[j][i] = 1; } } } cout << endl << setw(3) << " "; for (int i = 0; i < n; i++) cout << setw(3) << "(" << i << ")"; cout << endl << endl; for (int i = 0; i < n; i++) { cout << setw(4) << "(" << i << ")"; for (int j = 0; j < n; j++) cout << setw(5) << adj_mat[i][j]; cout << endl; } } int main() { int vert_degree[] = { 2, 2, 1, 1, 1 }; int n = sizeof(vert_degree) / sizeof(vert_degree[0]); generateGraph(vert_degree, n); }
(0) (1) (2) (3) (4) (0) 0 1 1 0 0 (1) 1 0 0 1 0 (2) 1 0 0 0 0 (3) 0 1 0 0 0 (4) 0 0 0 0 0