- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Compute the bit-wise XOR of a 1D and a 2D array element-wise in Numpy
To compute the bit-wise XOR of a 1D and a 2D array element-wise, use the numpy.bitwise_xor() method in Python Numpy.
Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ^.
The 1st and 2nd parameter are the arrays, only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape.
Steps
At first, import the required library −
import numpy as np
Creating two numpy arrays using the array() method. We have inserted elements of int type −
arr1 = np.array([32, 95, 82, 69, 38, 49]) arr2 = np.array([[28, 60, 81, 55, 89, 43]])
Display the arrays −
print("Array 1...
", arr1) print("
Array 2...
", arr2)
Get the type of the arrays −
print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)
Get the dimensions of the Arrays −
print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)
Get the shape of the Arrays −
print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)
To compute the bit-wise XOR of a 1D and a 2D array element-wise, use the numpy.bitwise_xor() method −
print("
Result...
",np.bitwise_xor(arr1, arr2))
Example
import numpy as np # Creating two numpy arrays using the array() method # We have inserted elements of int type arr1 = np.array([32, 95, 82, 69, 38, 49]) arr2 = np.array([[28, 60, 81, 55, 89, 43]]) # Display the arrays print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To compute the bit-wise XOR of two arrays element-wise, use the numpy.bitwise_xor() method in Python Numpy print("
Result...
",np.bitwise_xor(arr1, arr2))
Output
Array 1... [32 95 82 69 38 49] Array 2... [[28 60 81 55 89 43]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 1 Our Array 2 Dimensions... 2 Our Array 1 Shape... (6,) Our Array 2 Shape... (1, 6) Result... [[ 60 99 3 114 127 26]]
- Related Articles
- Compute the bit-wise AND of a 1D and a 2D array element-wise in Numpy
- Compute the bit-wise OR of a 1D and a 2D array element-wise in Numpy
- Compute the bit-wise XOR of two Numpy arrays element-wise
- Compute the bit-wise XOR of two boolean arrays element-wise in Numpy
- Compute the bit-wise XOR of two One-Dimensional Numpy arrays element-wise
- Compute the bit-wise XOR of two Two-Dimensional arrays element-wise in Numpy
- Compute the bit-wise NOT of an array element-wise in Numpy
- Compute the bit-wise NOT of a One-Dimensional array element-wise in Numpy
- Compute the bit-wise NOT of a Two-Dimensional array element-wise in Numpy
- Compute the bit-wise AND of two arrays element-wise in Numpy
- Compute the bit-wise AND of a One Dimensional and a zero-dimensional array element-wise in Numpy
- Compute the bit-wise OR of two Numpy arrays element-wise
- Compute the bit-wise AND of two boolean arrays element-wise in Numpy
- Compute the bit-wise AND of two One-Dimensional Numpy arrays element-wise
- Compute the bit-wise AND of two Two-Dimensional arrays element-wise in Numpy
