- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Check which element in a masked array is greater than or equal to a given value in NumPy

To check which element in a masked array is greater than or equal to a given value, use the **ma.MaskedArray.__ge__()** method. True is returned for every array element greater than or equal to a given value val. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.

NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.

## Steps

At first, import the required library −

import numpy as np import numpy.ma as ma

Create an array with int elements using the numpy.array() method −

arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)

Get the dimensions of the Array −

print("Array Dimensions...\n",arr.ndim)

Create a masked array and mask some of them as invalid −

maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)

Get the dimensions of the Masked Array −

print("\nOur Masked Array Dimensions...\n",maskArr.ndim)

Get the shape of the Masked Array −

print("\nOur Masked Array Shape...\n",maskArr.shape)

Get the number of elements of the Masked Array −

print("\nElements in the Masked Array...\n",maskArr.size)

The value to be compared −

val = 61 print("\nThe given value to be compared with the masked array elements...\n",val)

To check which element in a masked array is greater than or equal to a given value, use the ma.MaskedArray.__ge__() method. Returns with boolean type i.e. True and False. True is returned for every array element greater than or equal to a given value val −

print("\nDisplay True for each element greater than or equal to a given value val...\n", maskArr.__ge__(val))

## Example

import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # The value to be compared val = 61 print("\nThe given value to be compared with the masked array elements...\n",val) # To check which element in a masked array is greater than or equal to a given value, use the ma.MaskedArray.__ge__() method # Returns with boolean type i.e. True and False. # True is returned for every array element greater than or equal to a given value val print("\nDisplay True for each element greater than or equal to a given value val...\n", maskArr.__ge__(val))

## Output

Array... [[55 85 68 84] [67 33 39 53] [29 88 51 37] [56 45 99 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 68 84] [67 33 -- 53] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 The given value to be compared with the masked array elements... 61 Display True for each element greater than or equal to a given value val... [[-- -- True True] [True False -- False] [False True False --] [False -- True True]]

- Related Questions & Answers
- Check which element in a masked array is less than or equal to a given value in Numpy
- Check which element in a masked array is greater than a given value
- Check which element in a masked array is equal to a given value in NumPy
- Check which element in a masked array is not equal to a given value in NumPy
- Check which element in a masked array is less than the given value in Numpy
- Mask array elements greater than or equal to a given value in Numpy
- Mask array elements greater than a given value in Numpy
- Mask an array where less than or equal to a given value in Numpy
- Return the truth value of an array greater than equal to another element-wise in Numpy
- How to check whether a column value is less than or greater than a certain value in R?
- Find element in a sorted array whose frequency is greater than or equal to n/2 in C++.
- Compare and return True if a Numpy array is greater than equal to another
- How to check if a list element is greater than a certain value in R?
- Mask array elements equal to a given value in Numpy
- Check if any value in an R vector is greater than or less than a certain value.