Bidirectional Search?

C++Server Side ProgrammingProgramming

A bidirectional search is a searching technique that runs two way. It works with two who searches that run simultaneously, first one from source too goal and the other one from goal to source in a backward direction. In in an optimal state, both the searches will meet in the middle off the data structure.

The bidirectional search algorithm works on a directed graph to find the shortest path between the source(initial node) to the goal node. The two searches will start from their respective places and the algorithm stops when the two searches meet at a node.

Importance of the bidirectional approach− it is a faster technique, and improves the amount of time required for traversing the graph.

This approach is efficient in for the case when the starting node and goal node are unique and defined. branching factor is same for both directions.

Performance measures

• Completeness − Bidirectional search is complete if BFS is used in both searches.

• Optimality − It is optimal if BFS is used for search and paths have uniform cost.

• Time and Space Complexity − Time and space complexity is O(b^{d/2})

Example

#include <bits/stdc++.h>
using namespace std;
class Graph {
int V;
public:
Graph(int V);
int isIntersecting(bool *s_visited, bool *t_visited);
void printPath(int *s_parent, int *t_parent, int s,
int t, int intersectNode);
void BFS(list<int> *queue, bool *visited, int *parent);
int biDirSearch(int s, int t);
};
Graph::Graph(int V) {
this->V = V;
};
void Graph::addEdge(int u, int v) {
};
void Graph::BFS(list<int> *queue, bool *visited,
int *parent) {
int current = queue->front();
queue->pop_front();
list<int>::iterator i;
if (!visited[*i]) {
parent[*i] = current;
visited[*i] = true;
queue->push_back(*i);
}
}
};
int Graph::isIntersecting(bool *s_visited, bool *t_visited) {
int intersectNode = -1;
for(int i=0;i<V;i++) {
if(s_visited[i] && t_visited[i])
return i;
}
return -1;
};
void Graph::printPath(int *s_parent, int *t_parent,
int s, int t, int intersectNode) {
vector<int> path;
path.push_back(intersectNode);
int i = intersectNode;
while (i != s) {
path.push_back(s_parent[i]);
i = s_parent[i];
}
reverse(path.begin(), path.end());
i = intersectNode;
while(i != t) {
path.push_back(t_parent[i]);
i = t_parent[i];
}
vector<int>::iterator it;
cout<<"Path Traversed by the algorithm\n";
for(it = path.begin();it != path.end();it++)
cout<<*it<<" ";
cout<<"\n";
};
int Graph::biDirSearch(int s, int t) {
bool s_visited[V], t_visited[V];
int s_parent[V], t_parent[V];
list<int> s_queue, t_queue;
int intersectNode = -1;
for(int i=0; i<V; i++) {
s_visited[i] = false;
t_visited[i] = false;
}
s_queue.push_back(s);
s_visited[s] = true;
s_parent[s]=-1;
t_queue.push_back(t);
t_visited[t] = true;
t_parent[t] = -1;
while (!s_queue.empty() && !t_queue.empty()) {
BFS(&s_queue, s_visited, s_parent);
BFS(&t_queue, t_visited, t_parent);
intersectNode = isIntersecting(s_visited, t_visited);
if(intersectNode != -1) {
cout << "Path exist between " << s << " and "
<< t << "\n";
cout << "Intersection at: " << intersectNode << "\n";
printPath(s_parent, t_parent, s, t, intersectNode);
exit(0);
}
}
return -1;
}
int main() {
int n=15;
int s=0;
int t=14;
Graph g(n);