Best Time to Buy and Sell Stock IV in C++

C++Server Side ProgrammingProgramming

Suppose we have an array for which the i-th element is the price of a given stock for the day i. We have to devise an algorithm to find the maximum profit. We can complete at most k transactions. So if the input is like [3,2,6,4,0,3] and k = 2, then the output will be 7, as buy on day 2 (when price = 2) and sell on day 3 (when price = 6), profit will be 6-2 = 4. Then buy on day 5 (price is 0) and sell on day 6 (price is 3), profit will be 3-0 = 3.

To solve this, we will follow these steps −

  • Define one 3D array of order N + 5 x N + 5 x 2

  • Define one method called pre()

  • for initializing i := 0, when i<=N, increase i by 1 do −

    • for initializing j := 0, when j<=N, increase j by 1 do −

      • dp[i, j, 1] := - 1, dp[i, j, 0] := - 1

  • Define one method called solve(), this will take arr, i, n, k and status

  • if i is same as n, then,

    • if status is non-zero, then,

      • return - 100000

    • return 0

  • if dp[i, k, status] is not equal to -1, then,

    • return dp[i, k, status]

  • ans := solve(arr,i + 1,n,k,status)

  • if status is non-zero, then,

    • ans := max of ans, solve(arr,i + 1,n,k - 1, inverse of status) + arr[i]

  • Otherwise −

    • if k>0, then,

      • ans := max of ans,solve(arr,i + 1,n,k,inverse of status status) - arr[i]

  • return dp[i, k, status] := ans

  • From the main method do the following −

  • Call the function pre()

  • if k >= size of prices /2, then,

    • ans := 0

    • for initializing i := 1, when i < size of prices, increase i by 1 do −

      • if prices[i] > prices[i-1], then, ans = ans + prices[i] - prices[i - 1]

    • return ans

  • return solve(prices,0, size of prices, k, 0)

Example

Let us see the following implementation to get better understanding −

 Live Demo

#include <bits/stdc++.h>
using namespace std;
typedef int lli;
const lli N = 1000;
lli dp[N + 5][N + 5][2];
class Solution {
   public:
   void pre(){
      for(lli i =0;i<=N;i++){
         for(lli j = 0;j<=N;j++){
            dp[i][j][1]=-1;
            dp[i][j][0]=-1;
         }
      }
   }
   lli solve(vector<int> &arr, lli i,lli n,lli k, lli status){
      if(i == n){
         if(status)return -100000;
         return 0;
      }
      if(dp[i][k][status]!=-1)return dp[i][k][status];
      lli ans = solve(arr, i+1,n,k,status);
      if(status){
         ans = max(ans,solve(arr,i+1,n,k-1,!status)+ arr[i]) ;
      } else {
         if(k>0){
            ans = max(ans,(lli)solve(arr,i+1,n,k,!status)- arr[i]) ;
         }
      }
      return dp[i][k][status] = ans;
   }
   int maxProfit(int k, vector<int>& prices) {
      pre();
      if(k>=prices.size()/2){
         int ans = 0;
         for(int i = 1; i < prices.size(); i++){
            if(prices[i] > prices[i-1])ans += prices[i] - prices[i-1];
         }
         return ans;
      }
      return solve(prices,0,prices.size(),k,0);
   }
};
main(){
   Solution ob;
   vector<int> v = {3,2,6,4,0,3};
   cout << (ob.maxProfit(2, v));
}

Input

{ 3,2,6,4,0,3}

Output

7
raja
Published on 26-May-2020 13:56:37
Advertisements