Snake and Ladder Problem

AlgorithmsData StructureGraph Algorithms

We know about the famous game Snake and Ladder. In this game, some rooms are present on the board, with the room number. Some rooms are connected with a ladder or with snakes. When we get a ladder, we can climb up to some rooms to reach near to the destination without moving sequentially. Similarly, when we get some snake, it sends us to a lower room to start the journey again from that room.

In this problem, we have to find the minimum number of the dice throw is required to reach start to destination.

Input and Output

Input:
The starting and ending location of the snake and ladders.
Snake: From 26 to 0, From 20 to 8, From 16 to 3, From 18 to 6
Ladder From 2 to 21, From 4 to 7, From 10 to 25, from 19 to 28
Output:
Min Dice throws required is 3

Algorithm

minDiceThrow(move, cell)

Input: jump location for snake or ladder, and the total number of cells.
Output: Minimum number of dice throw required to reach to the final cell.

Begin
   initially mark all cell as unvisited
   define queue q
   mark the staring vertex as visited

   for starting vertex the vertex number := 0 and distance := 0
   add starting vertex s into q
   while q is not empty, do
      qVert := front element of the queue
      v := vertex number of qVert
      if v = cell -1, then //when it is last vertex
         break the loop
      delete one item from queue
      for j := v + 1, to v + 6 and j < cell, increase j by 1, do
         if j is not visited, then
            newVert.dist := (qVert.dist + 1)
            mark v as visited
         if there is snake or ladder, then
            newVert.vert := move[j] //jump to that location
         else
            newVert.vert := j
         insert newVert into queue
      done
   done
   return qVert.dist
End

Example

#include<iostream>
#include <queue>
using namespace std;

struct vertex {
   int vert;
   int dist;       // Distance of this vertex from source
};

int minDiceThrow(int move[], int cell) {
   bool visited[cell];
   for (int i = 0; i < cell; i++)
      visited[i] = false;    //initially all cells are unvisited

   queue<vertex> q;

   visited[0] = true;       //initially starting from 0
   vertex s = {0, 0};
   q.push(s);             // Enqueue 0'th vertex

   vertex qVert;
   while (!q.empty()) {
      qVert = q.front();
      int v = qVert.vert;

      if (v == cell-1)    //when v is the destination vertex
         break;

      q.pop();
      for (int j=v+1; j<=(v+6) && j<cell; ++j) {    //for next 1 to 6 cells
         if (!visited[j]) {
            vertex newVert;
            newVert.dist = (qVert.dist + 1);       //initially distance increased by 1
            visited[j] = true;

            if (move[j] != -1)
               newVert.vert = move[j];       //if jth place have snake or ladder
            else
               newVert.vert = j;
            q.push(newVert);
         }
      }
   }
   return qVert.dist;     //number of minimum dice throw
}

int main() {
   int cell = 30;       //consider there are 30 cells
   int moves[cell];

   for (int i = 0; i<cell; i++)
      moves[i] = -1;          //initially no snake or ladder are initialized

   //For ladder in cell i, it jumps to move[i]
   moves[2] = 21;
   moves[4] = 7;
   moves[10] = 25;
   moves[19] = 28;

   //For snake in cell i, it jumps to move[i]
   moves[26] = 0;
   moves[20] = 8;
   moves[16] = 3;
   moves[18] = 6;

   cout << "Min Dice throws required is " << minDiceThrow(moves, cell);
}

Output

Min Dice throws required is 3
raja
Updated on 16-Jun-2020 14:12:48

Advertisements