Merge Sort

Sorting AlgorithmAlgorithmsData Structure

The merge sort technique is based on divide and conquers technique. We divide the whole dataset into smaller parts and merge them into a larger piece in sorted order. It is also very effective for worst cases because this algorithm has lower time complexity for the worst case also.

The complexity of Merge Sort Technique

  1. Time Complexity: O(n log n) for all cases
  2. Space Complexity: O(n)

Input and Output

Input:
The unsorted list: 14 20 78 98 20 45
Output:
Array before Sorting: 14 20 78 98 20 45
Array after Sorting: 14 20 20 45 78 98

Algorithm

merge(array, left, middle, right)

Input: The data set array, left, middle and right index

Output: The merged list

Begin
   nLeft := m - left+1
   nRight := right – m
   define arrays leftArr and rightArr of size nLeft and nRight respectively

   for i := 0 to nLeft do
      leftArr[i] := array[left +1]
   done

   for j := 0 to nRight do
      rightArr[j] := array[middle + j +1]
   done

   i := 0, j := 0, k := left
   while i < nLeft AND j < nRight do
      if leftArr[i] <= rightArr[j] then
         array[k] = leftArr[i]
         i := i+1
      else
         array[k] = rightArr[j]
         j := j+1
      k := k+1
   done

   while i < nLeft do
      array[k] := leftArr[i]
      i := i+1
      k := k+1
   done

   while j < nRight do
      array[k] := rightArr[j]
      j := j+1
      k := k+1
   done
End

mergeSort(array, left, right)

Input: An array of data, and lower and upper bound of the array

Output: The sorted Array

Begin
   if lower < right then
      mid := left + (right - left) /2
      mergeSort(array, left, mid)
      mergeSort (array, mid+1, right)
      merge(array, left, mid, right)
End

Source Code (C++)

#include<iostream>
using namespace std;

void swapping(int &a, int &b) { //swap the content of a and b
   int temp;
   temp = a;
   a = b;
   b = temp;
}

void display(int *array, int size) {
   for(int i = 0; i<size; i++)
      cout << array[i] << " ";
   cout << endl;
}

void merge(int *array, int l, int m, int r) {
   int i, j, k, nl, nr;
   //size of left and right sub-arrays
   nl = m-l+1; nr = r-m;
   int larr[nl], rarr[nr];

   //fill left and right sub-arrays
   for(i = 0; i<nl; i++)
      larr[i] = array[l+i];
   for(j = 0; j<nr; j++)
      rarr[j] = array[m+1+j];

   i = 0; j = 0; k = l;
   //marge temp arrays to real array

   while(i < nl && j<nr) {
      if(larr[i] <= rarr[j]) {
         array[k] = larr[i];
         i++;
      }else{
         array[k] = rarr[j];
         j++;
      }
      k++;
   }

   while(i<nl) {       //extra element in left array
      array[k] = larr[i];
      i++; k++;
   }

   while(j<nr) {      //extra element in right array
      array[k] = rarr[j];
      j++; k++;
   }
}

void mergeSort(int *array, int l, int r) {
   int m;
   if(l < r) {
      int m = l+(r-l)/2;
      // Sort first and second arrays
      mergeSort(array, l, m);
      mergeSort(array, m+1, r);
      merge(array, l, m, r);
   }
}

int main() {
   int n;
   cout << "Enter the number of elements: ";
   cin >> n;
   int arr[n]; //create an array with given number of elements
   cout << "Enter elements:" << endl;

   for(int i = 0; i<n; i++) {
      cin >> arr[i];
   }

   cout << "Array before Sorting: ";
   display(arr, n);
   mergeSort(arr, 0, n-1); //(n-1) for last index
   cout << "Array after Sorting: ";
   display(arr, n);
}

Output

Enter the number of elements: 6
Enter elements:
14 20 78 98 20 45
Array before Sorting: 14 20 78 98 20 45
Array after Sorting: 14 20 20 45 78 98
raja
Published on 06-Jul-2018 12:28:44
Advertisements