
- Data Structures & Algorithms
- DSA - Home
- DSA - Overview
- DSA - Environment Setup
- Algorithm
- DSA - Algorithms Basics
- DSA - Asymptotic Analysis
- DSA - Greedy Algorithms
- DSA - Divide and Conquer
- DSA - Dynamic Programming
- Data Structures
- DSA - Data Structure Basics
- DSA - Array Data Structure
- Stack & Queue
- DSA - Stack
- DSA - Expression Parsing
- DSA - Queue
- Searching Techniques
- DSA - Linear Search
- DSA - Binary Search
- DSA - Interpolation Search
- DSA - Hash Table
- Sorting Techniques
- DSA - Sorting Algorithms
- DSA - Bubble Sort
- DSA - Insertion Sort
- DSA - Selection Sort
- DSA - Merge Sort
- DSA - Shell Sort
- DSA - Quick Sort
- Graph Data Structure
- DSA - Graph Data Structure
- DSA - Depth First Traversal
- DSA - Breadth First Traversal
- Tree Data Structure
- DSA - Tree Data Structure
- DSA - Tree Traversal
- DSA - Binary Search Tree
- DSA - AVL Tree
- DSA - Spanning Tree
- DSA - Heap
- DSA Useful Resources
- DSA - Questions and Answers
- DSA - Quick Guide
- DSA - Useful Resources
- DSA - Discussion
Box Stacking Problem
In this problem a set of different boxes are given, the length, breadth, and width may differ for different boxes. Our task is to find a stack of these boxes, whose height is as much as possible. We can rotate any box as we wish. But there is a rule to maintain.
One can place a box on another box if the area of the top surface for the bottom box is larger than the lower area of the top box.
Input and Output
Input: A list of boxes is given. Each box is denoted by (length, bredth, height). { (4, 6, 7), (1, 2, 3), (4, 5, 6), (10, 12, 32) } Output: The maximum possible height of box stack is: 60
Algorithm
maxHeight(boxList, n)
Input − The list of different boxes, number of boxes.
Output − maximum height found by making the stacking of boxes.
Begin define rotation array rot of size 3n. index := 0 for all boxes i, in the boxList, do rot[index].len := boxList[i].len rot[index].hei := maximum of boxList[i].hei and boxList[i].bre rot[index].bre := minimum of boxList[i].hei and boxList[i].bre index := index + 1 rot[index].len := boxList[i].bre rot[index].hei := maximum of boxList[i].len and boxList[i].hei rot[index].bre := minimum of boxList[i].len and boxList[i].hei index := index + 1 rot[index].len := boxList[i].hei rot[index].hei := maximum of boxList[i].len and boxList[i].bre rot[index].bre := minimum of boxList[i].len and boxList[i].bre index := index + 1 n := 3n sort the rot list define maxHeightTemp array for i := 1 to n-1, do for j := 0 to i-1, do if rot[i].bre < rot[j].bre AND rot[i].hei < rot[j].hei AND maxHeightTemp[i] < maxHeightTemp + rot[i].len, then maxHeightTemp[i] := maxHeightTemp[j] + rot[i].len done done maxHeight := -1 for i := 0 to n-1, do if maxHeight < maxHeightTemp[i], then maxHeight := maxHeightTemp[i] done done return maxHeight End
Example
#include<iostream> #include<algorithm> using namespace std; struct Box { int length, bredth, height; }; int min (int x, int y) { return (x < y)? x : y; } int max (int x, int y) { return (x > y)? x : y; } bool compare(Box b1, Box b2) { return b1.height > b2.height; //to sort the box as descending order of height } int maxHeight( Box boxList[], int n ) { Box rotation[3*n]; //a box can be rotared as 3 type, so there is 3n number of rotations int index = 0; for (int i = 0; i < n; i++) { //store initial position of the box rotation[index].length = boxList[i].length; rotation[index].height = max(boxList[i].height, boxList[i].bredth); rotation[index].bredth = min(boxList[i].height, boxList[i].bredth); index++; //dimention after first rotation rotation[index].length = boxList[i].bredth; rotation[index].height = max(boxList[i].length, boxList[i].height); rotation[index].bredth = min(boxList[i].length, boxList[i].height); index++; //Dimention after second rotation rotation[index].length = boxList[i].height; rotation[index].height = max(boxList[i].length, boxList[i].bredth); rotation[index].bredth = min(boxList[i].length, boxList[i].bredth); index++; } n = 3*n; //set n as 3n for 3 rotations of each boxes sort(rotation, rotation+n, compare); //sort rotation array as descending order int maxHTemp[n]; //temporary max height if ith box is stacked for (int i = 0; i < n; i++ ) maxHTemp[i] = rotation[i].length; for (int i = 1; i < n; i++ ) //find optimized stack height for (int j = 0; j < i; j++ ) if ( rotation[i].bredth < rotation[j].bredth && rotation[i].height < rotation[j].height && maxHTemp[i] < maxHTemp[j] + rotation[i].length) { maxHTemp[i] = maxHTemp[j] + rotation[i].length; } int maxHeight = -1; for ( int i = 0; i < n; i++ ) //find the maximum height from all temporary heights if ( maxHeight < maxHTemp[i] ) maxHeight = maxHTemp[i]; return maxHeight; } int main() { Box arr[] = { {4, 6, 7}, {1, 2, 3}, {4, 5, 6}, {10, 12, 32} }; int n = 4; cout<<"The maximum possible height of box stack is: " << maxHeight (arr, n) << endl; }
Output
The maximum possible height of box stack is: 60
- Related Articles
- Python – Stacking a single-level column with Pandas stack()?
- Stacking Elements in Layers using z-index Property using CSS
- Python - Stacking a multi-level column in a Pandas DataFrame
- Peterson’s Problem
- Partition problem
- Critical Section Problem
- Readers-Writers Problem
- Activity Selection Problem
- Fractional Knapsack Problem
- M-Coloring Problem
- N Queen Problem
- Subset Sum Problem
- Word Break Problem
- Friend Pairing Problem
- Vertex cover Problem

Advertisements