GSM - The Base Station Subsystem(BSS)


The BSS is composed of two parts:

  • The Base Transceiver Station (BTS)

  • The Base Station Controller (BSC)

The BTS and the BSC communicate across the specified Abis interface, enabling operations between components that are made by different suppliers. The radio components of a BSS may consist of four to seven or nine cells. A BSS may have one or more base stations. The BSS uses the Abis interface between the BTS and the BSC. A separate high-speed line (T1 or E1) is then connected from the BSS to the Mobile MSC.


The Base Transceiver Station (BTS)

The BTS houses the radio transceivers that define a cell and handles the radio link protocols with the MS. In a large urban area, a large number of BTSs may be deployed.


The BTS corresponds to the transceivers and antennas used in each cell of the network. A BTS is usually placed in the center of a cell. Its transmitting power defines the size of a cell. Each BTS has between 1 and 16 transceivers, depending on the density of users in the cell. Each BTS serves as a single cell. It also includes the following functions:

  • Encoding, encrypting, multiplexing, modulating, and feeding the RF signals to the antenna
  • Transcoding and rate adaptation
  • Time and frequency synchronizing
  • Voice through full- or half-rate services
  • Decoding, decrypting, and equalizing received signals
  • Random access detection
  • Timing advances
  • Uplink channel measurements

The Base Station Controller (BSC)

The BSC manages the radio resources for one or more BTSs. It handles radio channel setup, frequency hopping, and handovers. The BSC is the connection between the mobile and the MSC. The BSC also translates the 13 Kbps voice channel used over the radio link to the standard 64 Kbps channel used by the Public Switched Telephone Network (PSDN) or ISDN.

It assigns and releases frequencies and time slots for the MS. The BSC also handles intercell handover. It controls the power transmission of the BSS and MS in its area. The function of the BSC is to allocate the necessary time slots between the BTS and the MSC. It is a switching device that handles the radio resources. Additional functions include:

  • Control of frequency hopping
  • Performing traffic concentration to reduce the number of lines from the MSC
  • Providing an interface to the Operations and Maintenance Center for the BSS
  • Reallocation of frequencies among BTSs
  • Time and frequency synchronization
  • Power management
  • Time-delay measurements of received signals from the MS