Hands-On Generative Adversarial Networks with Keras

Hands-On Generative Adversarial Networks with Keras

Your guide to implementing next-generation generative adversarial networks


This eBook includes

Formats : PDF, EPUB, MOBI (Downlodable)

Pages : 272

ISBN : 9781789535136

Language : English

About the Book

Book description

Develop generative models for a variety of real-world use-cases and deploy them to production

Key Features

  • Discover various GAN architectures using Python and Keras library
  • Understand how GAN models function with the help of theoretical and practical examples
  • Apply your learnings to become an active contributor to open source GAN applications

Book Description

Generative Adversarial Networks (GANs) have revolutionized the fields of machine learning and deep learning. This book will be your first step towards understanding GAN architectures and tackling the challenges involved in training them.

This book opens with an introduction to deep learning and generative models, and their applications in artificial intelligence (AI). You will then learn how to build, evaluate, and improve your first GAN with the help of easy-to-follow examples. The next few chapters will guide you through training a GAN model to produce and improve high-resolution images. You will also learn how to implement conditional GANs that give you the ability to control characteristics of GAN outputs. You will build on your knowledge further by exploring a new training methodology for progressive growing of GANs. Moving on, you'll gain insights into state-of-the-art models in image synthesis, speech enhancement, and natural language generation using GANs. In addition to this, you'll be able to identify GAN samples with TequilaGAN.

By the end of this book, you will be well-versed with the latest advancements in the GAN framework using various examples and datasets, and you will have the skills you need to implement GAN architectures for several tasks and domains, including computer vision, natural language processing (NLP), and audio processing.

Foreword by Ting-Chun Wang, Senior Research Scientist, NVIDIA

What you will learn

  • Learn how GANs work and the advantages and challenges of working with them
  • Control the output of GANs with the help of conditional GANs, using embedding and space manipulation
  • Apply GANs to computer vision, NLP, and audio processing
  • Understand how to implement progressive growing of GANs
  • Use GANs for image synthesis and speech enhancement
  • Explore the future of GANs in visual and sonic arts
  • Implement pix2pixHD to turn semantic label maps into photorealistic images

Who this book is for

This book is for machine learning practitioners, deep learning researchers, and AI enthusiasts who are looking for a perfect mix of theory and hands-on content in order to implement GANs using Keras. Working knowledge of Python is expected.

Hands-On Generative Adversarial Networks with Keras

eBook Preview

Author Details

Packt Publishing

Packt Publishing

Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.

Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.

As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.

Our students work
with the Best

Related eBooks

View More

Annual Membership

Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses

Subscribe now
People having fun around a laptop

Online Certifications

Master prominent technologies at full length and become a valued certified professional.

Explore Now
People having fun around a laptop

Talk to us