
- C - Home
- C - Overview
- C - Features
- C - History
- C - Standards
- C - Environment Setup
- C - Program Structure
- C - Hello World
- C - Compilation Process
- C - Comments
- C - Basic Syntax
- C - User Input
- C - printf Function
- C - Format Specifiers
- Lexical Elements in C
- C - Tokens
- C - Keywords
- C - Identifiers
- Variables and Constants
- C - Variables
- C - Constants
- C - Const Qualifier
- C - Linkage
- Data Types and Type Conversions
- C - Data Types
- C - Literals
- C - Escape sequences
- C - Booleans
- C - Integer Promotions
- C - Character Arithmetic
- C - Type Conversion
- C - Type Casting
- Operators in C
- C - Operators
- C - Arithmetic Operators
- C - Unary Operators
- C - Relational Operators
- C - Logical Operators
- C - Bitwise Operators
- C - Assignment Operators
- C - Increment and Decrement Operators
- C - Ternary Operator
- C - sizeof Operator
- C - Operator Precedence
- C - Miscellaneous Operators
- Decision Making & Control Statements
- C - Decision Making
- C - if statement
- C - if...else statement
- C - if...else if Ladder
- C - Nested if statements
- C - Switch statement
- C - Nested switch statements
- C - Switch Case Using Range
- Loops in C
- C - Loops
- C - For Loop
- C - While Loop
- C - Do...while Loop
- C - For Loop vs While Loop
- C - Nested Loop
- C - Infinite Loop
- C - Break Statement
- C - Continue Statement
- C - Goto Statement
- Functions in C
- C - Functions
- C - Function Prototype
- C - Main Function
- C - Function call by Value
- C - Function call by reference
- C - Nested Functions
- C - Variadic Functions
- C - User-Defined Functions
- C - Callback Function
- C - Return Statement
- C - Recursion
- C - Predefined Identifier __func__
- Scope Rules in C
- C - Scope Rules
- C - Static Variables
- C - Global Variables
- Arrays in C
- C - Arrays
- C - Properties of Array
- C - Multi-Dimensional Arrays
- C - Passing Arrays to Function
- C - Return Array from Function
- C - Variable Length Arrays
- C - Dynamic Arrays
- Strings in C
- C - Strings
- C - Array of Strings
- C - Character Arrays
- C - Special Characters
- Structures and Unions in C
- C - Structures
- C - Structures and Functions
- C - Arrays of Structures
- C - Self-Referential Structures
- C - Dot (.) Operator
- C - Lookup Tables
- C - Enumeration (or enum)
- C - Structure Padding and Packing
- C - Nested Structures
- C - Anonymous Structure and Union
- C - Unions
- C - Bit Fields
- C - Typedef
- Pointers in C
- C - Pointers
- C - Pointers and Arrays
- C - Applications of Pointers
- C - Pointer Arithmetics
- C - Array of Pointers
- C - Pointer to Pointer
- C - Function Pointers
- C - Array of Function Pointers
- C - Passing Pointers to Functions
- C - Return Pointer from Functions
- C - Pointer to an Array
- C - Pointers vs. Multi-dimensional Arrays
- C - Character Pointers and Functions
- C - NULL Pointer
- C - void Pointer
- C - Const Pointers & Pointer to Const
- C - Dangling Pointers
- C - Dereference Pointer
- C - Near, Far and Huge Pointers
- C - Restrict Keyword
- C - Pointers to Structures
- C - Chain of Pointers
- C - Pointer vs Array
- C - Initialization of Pointer Arrays
- Storage Classes and Qualifiers
- C - Storage Classes
- Memory Management in C
- C - Memory Management
- C - Memory Address
- Preprocessors in C
- C - Preprocessors
- C - Pragmas
- C - Preprocessor Operators
- File Handling in C
- C - File I/O (File Handling)
- C - Input & Output
- Constants and Literals in C
- C - Macros
- C - Header Files
- Miscellaneous Topics
- C - Error Handling
- C - Variable Arguments
- C - Command Execution
- C - Math Functions
- C - Static Keyword
- C - Random Number Generation
- C - Command Line Arguments
- C Programming Resources
- C - Questions & Answers
- C - Quick Guide
- C - Cheat Sheet
- C - Useful Resources
- C - Discussion
- C Online Compiler
Variable Arguments in C
Sometimes, you may come across a situation, when you want to have a function that can accept a variable number of arguments (parameters) instead of a predefined number of arguments. The C programming language provides a solution for this situation.
Read this chapter to learn how you can define a function that can accept a variable number of parameters based on your requirement.
The following example shows the definition of such a function −
int func(int, ... ) { ... ... } int main() { func(1, 2, 3); func(1, 2, 3, 4); }
It should be noted that the function func() has its last argument as ellipses, i.e. three dotes (...) and the one just before the ellipses is always an int which will represent the total number variable arguments passed.
To get such a functionality, you need to use the stdarg.h header file which provides the functions and macros to implement the functionality of variable arguments.
Follow the steps given below −
- Define a function with its last parameter as ellipses and the one just before the ellipses is always an int which will represent the number of arguments.
- Create a va_list type variable in the function definition. This type is defined in stdarg.h header file.
- Use int parameter and va_start macro to initialize the va_list variable to an argument list. The macro va_start is defined in stdarg.h header file.
- Use va_arg macro and va_list variable to access each item in argument list.
- Use a macro va_end to clean up the memory assigned to va_list variable.
Example
Let us now follow the above steps and write down a simple function which can take the variable number of parameters and return their average −
#include <stdio.h> #include <stdarg.h> double average(int num,...) { va_list valist; double sum = 0.0; int i; /* initialize valist for num number of arguments */ va_start(valist, num); /* access all the arguments assigned to valist */ for (i = 0; i < num; i++) { sum += va_arg(valist, int); } /* clean memory reserved for valist */ va_end(valist); return sum/num; } int main() { printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2,3,4,5)); printf("Average of 5, 10, 15 = %f\n", average(3, 5,10,15)); }
Output
When the above code is compiled and executed, it produces the following output −
Average of 2, 3, 4, 5 = 3.500000 Average of 5, 10, 15 = 10.000000
It should be noted that the function average() has been called twice and each time the first argument represents the total number of variable arguments being passed. Only ellipses are used to pass variable number of arguments.