

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Sort the masked array in-place in NumPy
To sort the masked array in-place, use the ma.MaskedArray.sort() method in Python Numpy. The method returns an array of the same type and shape as array. When the array is a structured array, the order parameter specifies which fields to compare first, second, and so on. This list does not need to include all of the fields.
The endwith parameter, suggests whether missing values (if any) should be treated as the largest values (True) or the smallest values (False) When the array contains unmasked values sorting at the same extremes of the datatype, the ordering of these values and the masked values is undefined. The fill_value is a value used internally for the masked values. If fill_value is not None, it supersedes endwith.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...\n",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)
Get the dimensions of the Masked Array −
print("\nOur Masked Array Dimensions...\n",maskArr.ndim)
Get the shape of the Masked Array −
print("\nOur Masked Array Shape...\n",maskArr.shape)
Get the number of elements of the Masked Array −
print("\nElements in the Masked Array...\n",maskArr.size)
To Sort the masked array in-place, use the ma.MaskedArray.sort() method in Numpy −
maskArr.sort()
Display the Sorted Masked Array −
print("\nSorted masked array...\n",maskArr)
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # To Sort the masked array in-place, use the ma.MaskedArray.sort() method in Numpy maskArr.sort() # Display the Sorted Masked Array print("\nSorted masked array...\n",maskArr)
Output
Array... [[55 85 68 84] [67 33 39 53] [29 88 51 37] [56 45 99 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 68 84] [67 33 -- 53] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Sorted masked array... [[68 84 -- --] [33 53 67 --] [29 51 88 --] [56 85 99 --]]
- Related Questions & Answers
- Sort the masked array in-place along last axis in NumPy
- Sort the masked array in-place along axis 1 in NumPy
- Sort the masked array in-place along axis 0 in NumPy
- Sort the masked array in-place placing missing values in the front in NumPy
- Get the Masked Array Dimensions in Numpy
- Count the non-masked elements of the masked array in Numpy
- Add a scalar value with each element of a masked Array in-place in Numpy
- Subtract a scalar value from each element of a Masked Array in-place in Numpy
- Multiply each element of a masked Array by a scalar value in-place in Numpy
- Return the transpose of the masked array in NumPy
- Return the length of the masked array in Numpy
- Get the itemsize of the masked array in Numpy
- True Divide each element of a masked Array by a scalar value in-place in Numpy
- Return an ndarray of indices that sort the masked array along axis 0 in NumPy
- Return an ndarray of indices that sort the masked array along axis 1 in NumPy