Method Chaining - Problem

You're working as a wildlife researcher analyzing animal data! Given a DataFrame containing information about various animals, your task is to identify the heavyweight champions of the animal kingdom.

Your mission: Find all animals that weigh strictly more than 100 kilograms and return their names sorted by weight in descending order (heaviest first).

DataFrame Schema:

Column NameTypeDescription
nameobjectAnimal's name
speciesobjectAnimal species
ageintAnimal's age in years
weightintAnimal's weight in kilograms

This problem demonstrates method chaining - a powerful technique where you chain multiple DataFrame operations together for clean, readable data manipulation code.

Input & Output

example_1.py โ€” Basic Case
$ Input: DataFrame: | name | species | age | weight | |----------|---------|-----|--------| | Tatiana | Snake | 98 | 464 | | Khaled | Giraffe | 50 | 41 | | Alex | Leopard | 6 | 328 | | Jonathan | Monkey | 45 | 463 | | Stefan | Bear | 100 | 50 | | Tommy | Panda | 26 | 349 |
โ€บ Output: | name | |----------| | Tatiana | | Jonathan | | Tommy | | Alex |
๐Ÿ’ก Note: Animals with weight > 100kg: Tatiana(464kg), Alex(328kg), Jonathan(463kg), Tommy(349kg). Sorted by weight descending: Tatiana(464), Jonathan(463), Tommy(349), Alex(328).
example_2.py โ€” All Heavy Animals
$ Input: DataFrame: | name | species | age | weight | |---------|----------|-----|--------| | Jumbo | Elephant | 25 | 5000 | | Rhino | Rhino | 15 | 2300 | | Hippo | Hippo | 8 | 1500 |
โ€บ Output: | name | |-------| | Jumbo | | Rhino | | Hippo |
๐Ÿ’ก Note: All animals weigh more than 100kg. Sorted by weight: Jumbo(5000kg) > Rhino(2300kg) > Hippo(1500kg).
example_3.py โ€” No Heavy Animals
$ Input: DataFrame: | name | species | age | weight | |--------|---------|-----|--------| | Fluffy | Cat | 2 | 5 | | Buddy | Dog | 5 | 30 | | Tweet | Bird | 1 | 0.5 |
โ€บ Output: Empty DataFrame: | name | |------| | |
๐Ÿ’ก Note: No animals weigh more than 100kg, so the result is an empty DataFrame with just the 'name' column.

Visualization

Tap to expand
๐Ÿฆ Wildlife Data Processing SystemINPUTAll Animals๐Ÿ˜๐Ÿ๐Ÿฆ๐ŸฑFILTERWeight > 100kgโš–๏ธHeavy Animals Only๐Ÿ˜๐Ÿฆ (๐Ÿ๐Ÿฑ filtered)SORTBy Weight DESC๐Ÿ“ŠHeaviest First๐Ÿ˜(5000) โ†’ ๐Ÿฆ(2300)OUTPUTNames Only["Jumbo","Rhino"]Pandas Method Chaining Code:animals[animals['weight'] > 100].sort_values('weight', ascending=False)[['name']]๐ŸŽฏ Efficient pipeline processing with O(n log n) time complexity
Understanding the Visualization
1
Input Gate
All animal records enter the processing pipeline
2
Weight Scanner
Automatic filter removes animals โ‰ค 100kg
3
Sorting Scale
Remaining animals sorted by weight (heaviest first)
4
Name Tag Printer
Only animal names are output for the final list
Key Takeaway
๐ŸŽฏ Key Insight: Method chaining creates an elegant, readable pipeline that leverages pandas' optimized C implementations for maximum performance.

Time & Space Complexity

Time Complexity
โฑ๏ธ
O(n log n)

O(n) for filtering + O(n log n) for sorting, but optimized at C level

n
2n
โšก Linearithmic
Space Complexity
O(k)

O(k) for the filtered result where k โ‰ค n

n
2n
โœ“ Linear Space

Constraints

  • 1 โ‰ค animals.length โ‰ค 104
  • Animal weights are non-negative integers
  • Weight threshold is strictly greater than 100kg (not inclusive)
  • Animal names are unique within the dataset
Asked in
Google 45 Amazon 38 Meta 28 Netflix 22
23.4K Views
High Frequency
~8 min Avg. Time
892 Likes
Ln 1, Col 1
Smart Actions
๐Ÿ’ก Explanation
AI Ready
๐Ÿ’ก Suggestion Tab to accept Esc to dismiss
// Output will appear here after running code
Code Editor Closed
Click the red button to reopen