Modify Columns - Problem
DataFrame Salary Modification

You are working as a data analyst for a company that has decided to give all employees a 100% salary increase due to exceptional performance this year! ๐ŸŽ‰

Given a DataFrame employees with columns name and salary, you need to modify the existing salary column by multiplying each employee's current salary by 2.

Input: A pandas DataFrame with employee names and their current salaries
Output: The same DataFrame with all salaries doubled

Note: This is a DataFrame manipulation problem focusing on column modification operations.

Input & Output

example_1.py โ€” Basic Salary Update
$ Input: employees = pd.DataFrame({'name': ['Alice', 'Bob'], 'salary': [50000, 60000]})
โ€บ Output: pd.DataFrame({'name': ['Alice', 'Bob'], 'salary': [100000, 120000]})
๐Ÿ’ก Note: Each employee's salary is doubled: Alice goes from $50,000 to $100,000, and Bob goes from $60,000 to $120,000
example_2.py โ€” Single Employee
$ Input: employees = pd.DataFrame({'name': ['Charlie'], 'salary': [75000]})
โ€บ Output: pd.DataFrame({'name': ['Charlie'], 'salary': [150000]})
๐Ÿ’ก Note: With only one employee, Charlie's salary is doubled from $75,000 to $150,000
example_3.py โ€” Multiple Employees
$ Input: employees = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie', 'David'], 'salary': [50000, 60000, 70000, 80000]})
โ€บ Output: pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie', 'David'], 'salary': [100000, 120000, 140000, 160000]})
๐Ÿ’ก Note: All four employees receive the salary doubling: 50kโ†’100k, 60kโ†’120k, 70kโ†’140k, 80kโ†’160k

Visualization

Tap to expand
DataFrame Salary Modification VisualizationStep 1: Original DataName | SalaryAlice | 50000Bob | 60000Charlie | 70000David | 80000Step 2: Select ColumnSalary Column:50000600007000080000Step 3: Apply ร— 2Vectorized Op:50000 ร— 2 = 10000060000 ร— 2 = 12000070000 ร— 2 = 14000080000 ร— 2 = 160000ร—2Step 4: Final ResultName | New SalaryAlice | 100000Bob | 120000Charlie | 140000David | 160000Code Implementationemployees['salary'] = employees['salary'] * 2โœจ Pandas vectorization handles all rows simultaneously๐ŸŽฏ All employees get their well-deserved raise! ๐ŸŽ‰
Understanding the Visualization
1
Access Column
Select the entire salary column from the DataFrame
2
Apply Operation
Use vectorized multiplication to double all values at once
3
Update DataFrame
The modified column replaces the original salary column
4
Return Result
Return the DataFrame with all salaries successfully doubled
Key Takeaway
๐ŸŽฏ Key Insight: Vectorized operations in pandas allow us to perform mathematical operations on entire columns simultaneously, making data transformations both fast and intuitive.

Time & Space Complexity

Time Complexity
โฑ๏ธ
O(n)

Linear time but with highly optimized vectorized operations

n
2n
โœ“ Linear Growth
Space Complexity
O(1)

Modifies column in-place without creating additional copies

n
2n
โœ“ Linear Space

Constraints

  • 1 โ‰ค number of employees โ‰ค 1000
  • 1 โ‰ค salary โ‰ค 106
  • All salaries are positive integers
  • Employee names are non-empty strings
Asked in
Netflix 25 Spotify 20 Airbnb 15 Uber 12
28.5K Views
High Frequency
~5 min Avg. Time
892 Likes
Ln 1, Col 1
Smart Actions
๐Ÿ’ก Explanation
AI Ready
๐Ÿ’ก Suggestion Tab to accept Esc to dismiss
// Output will appear here after running code
Code Editor Closed
Click the red button to reopen