Making use of the cube root table, find the cubes root of the following (correct to three decimal places)
833

AcademicMathematicsNCERTClass 8

Given: 

833

To find: 

We have to find the cube root of the given number correct to three decimal places using cube root table.

Solution:

$\sqrt[3]{833}=\sqrt[3]{83.3 \times 10}$

$=\sqrt[3]{83.3} \times \sqrt[3]{10}$

$\sqrt[3]{83}=4.362$

$\sqrt[3]{84}=4.380$

For the difference $(84-83)=1$,

The difference in the values $=4.380-4.362$

$=0.018$

This implies,

For the difference of $0.3$,

The difference in the values $=0.018 \times 0.3$

$=0.0054$

$=0.005$

Therefore,

$\sqrt[3]{83.3}=4.362+0.005$

$=4.367$

$\sqrt[3]{10}=2.154$

$\sqrt[3]{833} =\sqrt[3]{83.3} \times \sqrt[3]{10}$

$=4.367 \times 2.154$

$=9.407$ 

raja
Updated on 10-Oct-2022 13:19:15

Advertisements