Making use of the cube root table, find the cubes root of the following (correct to three decimal places)
7532

AcademicMathematicsNCERTClass 8

Given: 

7532

To find: 

We have to find the cube root of the given number correct to three decimal places using cube root table.

Solution:

$\sqrt[3]{7532}=\sqrt[3]{75.32 \times 100}$

$=\sqrt[3]{75.32} \times \sqrt[3]{100}$

$\sqrt[3]{75}=4.217$

$\sqrt[3]{76}=4.236$

For the difference $(76-75)=1$,

The difference in the values $=4.236-4.217$

$=0.019$

This implies,

For the difference of $0.32$,

The difference in the values $=0.019 \times 0.32$

$=0.00608$

$=0.006$

Therefore,

$\sqrt[3]{75.32}=4.217+0.006$

$=4.223$

$\sqrt[3]{100}=4.642$

$\sqrt[3]{7532} =\sqrt[3]{75.32} \times \sqrt[3]{100}$

$=4.642 \times 4.223$

$=19.603$ 

raja
Updated on 10-Oct-2022 13:19:15

Advertisements