# Identify like terms in the following:<$(a)$.$-xy^2,-4yx^2,\ 8x^2,\ 2xy^2,\ 7y,-11x^2,-100x,-11yx,\ 20x^{2y},-6x^2,\ y,\ 2xy,\ 3x$$(b)$. $10pq,\ 7p,\ 8q,-p^2q^2,-7qp,-100q,-23,\ 12q^2p^2,-5p^2,\ 41,\ 2405p,\ 78qp,\ 13p^2q,\ qp^2,\ 701p^2$

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

Given: $(a)$.$-xy^2,-4yx^2,\ 8x^2,\ 2xy^2,\ 7y,-11x^2,-100x,-11yx,\ 20x^{2}y,-6x^2,\ y,\ 2xy,\ 3x$

$(b)$. $10pq,\ 7p,\ 8q,-p^2q^2,-7qp,-100q,-23,\ 12q^2p^2,-5p^2,\ 41,\ 2405p,\ 78qp,\ 13p^2q,\ qp^2,\ 701p^2$

To do: To identify like terms in the given algebraic terms.

Solution:

Like terms are those terms whose variables and their exponent power are the same. The coefficient of these variables can be different.

Unlike terms are those terms whose variables and their exponents are different from each other.

$(a)$. Like terms are:

• $-xy^2,\ 2xy^2$
• $-4yx^2,\ 20x^2y$
• $8x^2,\ -11x^2,\ -6x^2$
• $7y,\ y$
• $-100x,\ 3x$
• $-11yx,\ 2xy$

$(b)$. Like terms are:

• $10pq,\ -7qp,\ 78qp$
• $7p,\ 2405p$
• $8q,\ -100q$
• $-p^2q^2,\ 12q^2p^2$
• $-23,\ 41$
• $-5p^2,\ 701p^2$
• $13p^2q,\ qp^2$
Updated on 10-Oct-2022 13:38:09