

GATE Syllabus Chemistry

tutorialspoint

EASY

www.tutorialspoint.com

GATESHAR

LEARNI

https://twitter.com/tutorialspoint

CHEMISTRY

Subject Code: CY

Course Structure

Sections/Units	Topics
Section A	Physical Chemistry
Unit 1	Structure
Unit 2	Equilibrium
Unit 3	Kinetics
Unit 4	Surfaces and Interfaces
Section B	Inorganic Chemistry
Unit 1	Main Group Elements
Unit 2	Transition Elements
Unit 3	Lanthanides and Actinides
Unit 4	Organometallics
Unit 5	Radioactivity
Unit 6	Bioinorganic Chemistry
Unit 7	Solids
Unit 8	Instrumental Methods of Analysis
Section C	Organic Chemistry
Unit 1	Stereochemistry
Unit 2	Reaction Mechanisms
Unit 3	Organic Synthesis
Unit 4	Pericyclic Reactions and Photochemistry

Unit 5	Heterocyclic Compounds
Unit 6	Biomolecules
Unit 7	Spectroscopy

Course Syllabus

Section A: Physical Chemistry

Unit 1: Structure

- > Postulates of quantum mechanics
- > Time dependent and time independent Schrödinger equations
- Born interpretation
- > Particle in a box
- > Harmonic oscillator
- > Rigid rotor
- > Hydrogen atom: atomic orbitals
- > Multi-electron atoms: orbital approximation
- > Variation and first order perturbation techniques
- > Chemical bonding: Valence bond theory and LCAO-MO theory
- Hybrid orbitals
- > Applications of LCAO-MOT to H_2+ , H_2 and other homonuclear diatomic molecules, heteronuclear diatomic molecules like HF, CO, NO, and to simple delocalized $\pi-$ electron systems
- > Hückel approximation and its application to annular π electron systems
- Symmetry elements and operations
- > Point groups and character tables
- Origin of selection rules for rotational, vibrational, electronic and Raman spectroscopy of diatomic and polyatomic molecules
- > Einstein coefficients
- Relationship of transition moment integral with molar extinction coefficient and oscillator strength
- Basic principles of nuclear magnetic resonance: nuclear g factor, chemical shift, nuclear coupling

Unit 2: Equilibrium

- Laws of thermodynamics
- Standard states

- > Thermochemistry
- > Thermodynamic functions and their relationships:
 - Gibbs-Helmholtz and Maxwell relations
 - Van't Hoff equation
- > Criteria of spontaneity and equilibrium
- Absolute entropy
- Partial molar quantities
- > Thermodynamics of mixing
- Chemical potential
- > Fugacity, activity and activity coefficients
- Chemical equilibria
- > Dependence of equilibrium constant on temperature and pressure
- Non-ideal solutions
- Ionic mobility and conductivity
- Debye-Hückel limiting law
- > Debye-Hückel-Onsager equation
- > Standard electrode potentials and electrochemical cells
- Potentiometric and conductometric titrations
- > Phase rule
- > Clausius Clapeyron equation
- Phase diagram of one component systems: CO₂, H₂O, S
- Two component systems:
 - Liquid-vapour system
 - Liquid-liquid system
 - Solid-liquid systems
- Fractional distillation
- > Azeotropes and eutectics
- Statistical thermodynamics:
 - Microcanonical and canonical ensembles
 - Boltzmann distribution
 - Partition functions
 - Thermodynamic properties

Unit 3: Kinetics

- > Transition state theory:
 - Eyring equation
 - Thermodynamic aspects
- > Potential energy surfaces and classical trajectories
- > Elementary, parallel, opposing and consecutive reactions
- Steady state approximation
- Mechanisms of complex reactions

- > Unimolecular reactions
- > Kinetics of polymerization and enzyme catalysis
- > Fast reaction kinetics: relaxation and flow methods
- > Kinetics of photochemical and photophysical processes

Unit 4: Surfaces and Interfaces

- > Physisorption and chemisorption
- > Langmuir, Freundlich and BET isotherms
- > Surface catalysis: Langmuir-Hinshelwood mechanism
- Surface tension, viscosity
- Self-assembly
- > Physical chemistry of colloids, micelles and macromolecules

Section B: Inorganic Chemistry

Unit 1: Main Group Elements

- > Hydrides, halides, oxides, oxoacids, nitrides, sulfides shapes and reactivity
- Structure and bonding of boranes, carboranes, silicones, silicates, boron nitride, borazines and phosphazenes
- > Allotropes of carbon
- > Chemistry of noble gases, pseudohalogens, and interhalogen compounds
- Acid-base concepts

Unit 2: Transition Elements

- Coordination chemistry:
 - structure and isomerism
 - Theories of bonding (VBT, CFT, and MOT)
- Energy level diagrams in various crystal fields, CFSE, applications of CFT, Jahn-Teller distortion
- Electronic spectra of transition metal complexes:
 - Spectroscopic term symbols
 - Selection rules
 - Orgel diagrams
 - Charge-transfer spectra
- > Magnetic properties of transition metal complexes
- Reaction mechanisms:
 - Kinetic and thermodynamic stability
 - Substitution and redox reactions

Unit 3: Lanthanides and Actinides

- Recovery
- Periodic properties
- Spectra properties
- Magnetic properties

Unit 4: Organometallics

- > 18-Electron rule
 - metal-alkyl
 - metal-carbonyl
 - metal-olefin and metalcarbene complexes
 - metallocenes
- > Fluxionality in organometallic complexes
- > Types of organometallic reactions
- Homogeneous catalysis:
 - Hydrogenation
 - Hydroformylation
 - Acetic acid synthesis
 - Metathesis and olefin oxidation
- > Heterogeneous catalysis:
 - Fischer-Tropsch reaction
 - Ziegler-Natta polymerization

Unit 5: Radioactivity

- Decay processes
- > Half-life of radioactive elements
- Fission and fusion processes

Unit 6: Bioinorganic Chemistry

- ➢ Ion (Na⁺ and K⁺) transport
- > Oxygen binding
- Transport and utilization
- > Electron transfer reactions
- > Nitrogen fixation
- Metalloenzymes containing:
 - Magnesium
 - Molybdenum

- Iron
- Cobalt
- Copper
- Zinc

Unit 7: Solids

- Crystal systems and lattices
- > Miller planes
- Crystal packing
- Crystal defects
- ➢ Bragg's law
- Ionic crystals
- Structures of AX, AX2, ABX3 type compounds
- > Spinels
- Band theory
- > Metals
- Semiconductors

Unit 8: Instrumental Methods of Analysis

- > UV-visible spectrophotometry
- NMR and ESR spectroscopy
- Mass spectrometry
- Chromatography including GC and HPLC
- Electroanalytical methods:
 - Polarography
 - Cyclic voltammetry
 - Ion-selective electrodes
- Thermoanalytical methods

Section C: Organic Chemistry

Unit 1: Stereochemistry

- Chirality of organic molecules with or without chiral centres and determination of their absolute configurations
- Relative stereochemistry in compounds having more than one stereogenic centre
- Homotopic, enantiotopic and diastereotopic atoms, groups and faces
- > Stereoselective and stereospecific synthesis

- > Conformational analysis of acyclic and cyclic compounds
- > Geometrical isomerism
- Configurational and conformational effects, and neighbouring group participation on reactivity and selectivity/specificity

Unit 2: Reaction Mechanisms

- Basic mechanistic concepts:
 - Kinetic versus thermodynamic control
 - Hammond's postulate and Curtin-Hammett principle
- Methods of determining reaction mechanisms through identification of products, intermediates and isotopic labeling
- Nucleophilic and electrophilic substitution reactions (both aromatic and aliphatic)
- Addition reactions to carbon-carbon and carbon-heteroatom (N, O) multiple bonds
- > Elimination reactions
- Reactive intermediates:
 - Carbocations
 - Carbanions
 - Carbenes
 - Nitrenes
 - Arynes
 - Free radicals
- > Molecular rearrangements involving electron deficient atoms

Unit 3: Organic Synthesis

- Synthesis, reactions, mechanisms and selectivity involving the following classes of compounds:
 - Alkenes
 - Alkynes
 - Arenes
 - Alcohols
 - Phenols
 - Aldehydes
 - Ketones
 - Carboxylic acids
 - Esters
 - Nitriles
 - Halides
 - Nitro compounds

- Amines and amides
- > Uses of Mg, Li, Cu, B, Zn and Si based reagents in organic synthesis
- Carbon-carbon bond formation through coupling reactions Heck, Suzuki, Stille and Sonogoshira
- > Concepts of multistep synthesis:
 - Retrosynthetic analysis
 - Strategic disconnections
 - Synthons and synthetic equivalents
- > Umpolung reactivity formyl and acyl anion equivalents
- > Selectivity in organic synthesis chemo-, regio- and stereoselectivity
- Protection and deprotection of functional groups
- Concepts of asymmetric synthesis resolution (including enzymatic), desymmetrization and use of chiral auxiliaries
- Carbon-carbon bond forming reactions through enolates (including boron enolates), enamines and silyl enol ethers.
- Michael addition reaction
- Stereoselective addition to C=O groups (Cram and Felkin-Anh models)

Unit 4: Pericyclic Reactions and Photochemistry

- > Electrocyclic, cycloaddition and sigmatropic reactions
- > Orbital correlations FMO and PMO treatments
- > Photochemistry of alkenes, arenes and carbonyl compounds
- Photooxidation and photoreduction
- > Di-π-methane rearrangement, Barton reaction

Unit 5: Heterocyclic Compounds

- > Structure
- > Preparation
- > Properties and reactions of furan
- > Pyrrole
- > Thiophene
- > Pyridine
- Indole
- > Quinolone
- Isoquinoline

Unit 6: Biomolecules

- > Structure
- > Properties and reactions of mono- and di-saccharides
- > Physicochemical properties of amino acids
- > Chemical synthesis of peptides
- > Structural features of proteins
- Nucleic acids
- > Steroids
- > Terpenoids
- > Carotenoids
- > Alkaloids

Unit 7: Spectroscopy

Applications of UV-visible, IR, NMR and Mass spectrometry in the structural determination of organic molecules

