# Find the tens digit of the cube root of(i) 226981.(ii) 13824(iii) 571787(iv) 175616

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

To find:

We have to find the units digit of the cube root of the given numbers.

Solution:

 Digit at the unit place of a number Digit at the unit place of the cube 0 0     ($0^3=0$) 1 1     ($1^3=1$) 2 8     ($2^3=8$) 3 7     ($3^3=27$) 4 4     ($4^3=64$) 5 5     ($5^3=125$) 6 6     ($6^3=216$) 7 3     ($7^3=343$) 8 2     ($8^3=512$) 9 9     ($9^3=729$)

(i) Leaving three digits number 981, we have,

226

$6^3=216, 7^3=343$

$6^3<226<7^3$

Therefore,

The tens digit of its cube root will be 6.

(ii) Leaving three digits number 824, we have,

13

$2^3=8, 3^3=27$

$2^3<13<3^3$

Therefore,

The tens digit of its cube root will be 2.

(iii) Leaving three digits number 787, we have,

571

$8^3=512, 9^3=729$

$8^3<571<9^3$

Therefore,

The tens digit of its cube root will be 8.

(iv) Leaving three digits number 616, we have,

175

$5^3=125, 6^3=216$

$5^3<175<6^3$

Therefore,

The tens digit of its cube root will be 5.

Updated on 10-Oct-2022 13:19:09