April Learning Carnival is here, Use code FEST10 for an extra 10% off

Practitioner’s Guide to Data Science

person icon BPB Publications

Practitioner’s Guide to Data Science

Streamlining Data Science Solutions Using Python, Scikit-Learn, and Azure ML Service Platform


This eBook includes

Formats : PDF, EPUB (Downlodable)

Pages : 242

ISBN : 9789391392871

Language : English

About the Book

Book description

Covers Data Science concepts, processes, and the real-world hands-on use cases.

Key Features
● Covers the journey from a basic programmer to an effective Data Science developer.
● Applied use of Data Science native processes like CRISP-DM and Microsoft TDSP.
● Implementation of MLOps using Microsoft Azure DevOps.

"How is the Data Science project to be implemented?" has never been more conceptually sounding, thanks to the work presented in this book. This book provides an in-depth look at the current state of the world's data and how Data Science plays a pivotal role in everything we do.

This book explains and implements the entire Data Science lifecycle using well-known data science processes like CRISP-DM and Microsoft TDSP. The book explains the significance of these processes in connection with the high failure rate of Data Science projects.

The book helps build a solid foundation in Data Science concepts and related frameworks. It teaches how to implement real-world use cases using data from the HMDA dataset. It explains Azure ML Service architecture, its capabilities, and implementation to the DS team, who will then be prepared to implement MLOps. The book also explains how to use Azure DevOps to make the process repeatable while we're at it.

By the end of this book, you will learn strong Python coding skills, gain a firm grasp of concepts such as feature engineering, create insightful visualizations and become acquainted with techniques for building machine learning models.

What you will learn
● Organize Data Science projects using CRISP-DM and Microsoft TDSP.
● Learn to acquire and explore data using Python visualizations.
● Get well versed with the implementation of data pre-processing and Feature Engineering.
● Understand algorithm selection, model development, and model evaluation.
● Hands-on with Azure ML Service, its architecture, and capabilities.
● Learn to use Azure ML SDK and MLOps for implementing real-world use cases.

Who this book is for
This book is intended for programmers who wish to pursue AI/ML development and build a solid conceptual foundation and familiarity with related processes and frameworks. Additionally, this book is an excellent resource for Software Architects and Managers involved in the design and delivery of Data Science-based solutions.

Table of Contents
1. Data Science for Business
2. Data Science Project Methodologies and Team Processes
3. Business Understanding and Its Data Landscape
4. Acquire, Explore, and Analyze Data
5. Pre-processing and Preparing Data
6. Developing a Machine Learning Model
7. Lap Around Azure ML Service
8. Deploying and Managing Models

Practitioner’s Guide to Data Science

eBook Preview

Author Details

BPB Publications

BPB Publications

BPB is Asia's largest publishers of Computer & IT books. For the last 63 years BPB has been a friend, philosopher and guide for programmers, developers, hardware technicians, IT Professionals who have made things happen in the IT World.

Our students work
with the Best

Related eBooks

View More

Annual Membership

Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses

Subscribe now
Annual Membership

Online Certifications

Master prominent technologies at full length and become a valued certified professional.

Explore Now
Online Certifications

Talk to us