# A godown measures $40 \mathrm{~m} \times 25 \mathrm{~m} \times 15 \mathrm{~m}$. Find the maximum number of wooden crates each measuring $1.5 \mathrm{~m} \times 1.25 \mathrm{~m} \times 0.5 \mathrm{~m}$ that can be stored in the godown.

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

Given:

A godown measures $40\ m \times 25\ m \times 10\ m$.

To do:

We have to find the maximum number of wooden crates each measuring $1.5\ m \times 1.25\ m \times 0.5\ m$ that can be stored in the godown.

Solution:

Length of the godown $(L) = 40\ m$

Breadth of the godown $(B) = 25\ m$

Height of the godown $(H) = 10\ m$

Therefore,

Volume of the godown $= LBH$

$= 40 \times 25 \times 10$

$= 10000\ m^3$

Dimensions of each wooden crate $= 1.5\ m \times 1.25\ m \times 0.5\ m$

Volume of each crate $= 1.5 \times 1.25 \times 0.5$

$= 0.9375\ m^3$

This implies,

The number of crates to be stored in the godown $=\frac{\text { Volume of godown }}{\text { Volume of one crate }}$

$=\frac{10000}{0.9375}$

$=\frac{10000 \times 10000}{9375}$

$=10666$ crates

The maximum number of wooden crates each measuring $1.5\ m \times 1.25\ m \times 0.5\ m$ that can be stored in the godown is 10666 crates.

Updated on 10-Oct-2022 13:46:38