XAML - DEBUGGING

If you are familiar with debugging in any procedural language [such as C#, C/C++ etc.| and you know
the usage of break and are expecting the same kind of debugging in XAML, then you will be
surprised to know that it is not possible yet to debug an XAML code like the way you used to debug
any other procedural language code. Debugging an XAML app means trying to find an error;

¢ In data binding, your data doesn't show up on screen and you don't know why
e Oranissue is related to complex layouts.

e Or an alignmentissue or issues in margin color, overlays, etc. with some extensive templates
like ListBox and combo box.

Debugging in XAML is something you typically do to check if your bindings work, and if itis not
working, then to check what's wrong. Unfortunately, setting breakpoints in XAML bindings isn't
possible exceptin Silverlight, but we can use the Output window to check for data binding errors.
Let's have a look at the following XAML code to find the error in data binding.

<Window x:Class = "DataBindingOneWay .MainwWindow"
xmlns = "http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml"
Title = "Mainwindow" Height = "350" width = "604">
<Grid>
<StackPanel Name = "Display">
<StackPanel Orientation = "Horizontal" Margin = "50, 50, 0, 0">
<TextBlock Text = "Name: " Margin = "10" Width = "100"/>
<TextBlock Margin = "10" width = "100" Text = "{Binding FirstName}"/>
</StackPanel>
<StackPanel Orientation = "Horizontal" Margin = "50,0,50,0">
<TextBlock Text = "Title: " Margin = "10" Width = "100"/>
<TextBlock Margin = "10" Width="100" Text = "{Binding Title}" />
</StackpPanel>
</StackPanel>
</Grid>
</Window>

Text properties of the two text blocks are setto “Name” and “Title” statically, while the other two
text block’s Text properties are bound to “FirstName” and “Title”. But the class variables are
intentionally taken as Name and Title in the Employee class which are incorrect variable names.
Let us now try to understand where we can find this type of mistake when the desired outputis not
shown.

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace DataBindingOnewWay {
public class Employee {
public string Name { get; set; }
public string Title { get; set; }

public static Employee GetEmployee() {
var emp = new Employee() {
Name = "Ali Ahmed",
Title = "Developer"

iy

http://www.tutorialspoint.com/xaml/xaml_debugging.htm

return emp;

}

Here is the implementation of MainWindow class in C# code —

using System;
using System.Windows;
using System.Windows.Controls;

namespace DataBindingOnewWay {
/// <summary>
/// Interaction logic for MainwWindow.xaml
/// </summary>

public partial class MainwWindow : Window {
public MainWindow() {

InitializeComponent();
DataContext = Employee.GetEmployee();

}

Let's run this application and you can see immediately in our MainWindow that we have
successfully bound to the Title of that Employee object but the name is not bound.

. MainWindow . n—

Mame:

Title: Developer

To check what happened with the name, let’s look at the output window where a lot of log is
generated.

The easiest way to find an error is to just search for error and you will find the below mentioned
error which says “BindingExpression path error: 'FirstName' property not found on 'object’
"Employe”

System.Windows.Data Error: 40 : BindingExpression path error: 'FirstName'
property not found on 'object' ''Employee' (HashCode=11611730)"'.

BindingExpression:Path=FirstName;

DataItem='Employee' (HashCode=11611730); target element is 'TextBlock' (Name='");

target property is 'Text' (type 'String')

Which clearly indicate that FirstName is not a member of Employee class, so it helps to fix this type
of issues in your application.

When you change the FirstName to Name again, you will see the desired output.

Ul Debugging Tools for XAML

Ul debugging tools for XAML are introduced with Visual Studio 2015 to inspect the XAML code at
runtime. With the help of these tools, XAML code is presented in the form of visual tree of your
running WPF application and also the different Ul element properties in the tree. To enable this
tool, follow the steps given below.

Step 1 — Go to the Tools menu and select Options from the Tools menu.

Step 2 — You will get to see the following dialog box.

Options ? ﬂ

Search Oations [Ctrl+E) £ General
[B Environment - [] wse Maneged Compatibility Mode ~
I Projects and Solutons [] Use Mative Compatibiliy Mode
I+ Source Control [] Use the legacy C# and VB expression evaluators
I Text Editor [#] Warn when using custern debugger visualizers against potentizlly ursafe pr
| 4 Debugging [[] Ensble Windows deoug heap allecator [Mative only)
Gene “
Just-In-Time o] Preview selected elsments in Live Visual Tiee
il o e [¥] Eneble Disgnostic Took while debugging
R [¥] Shew elapsed time PerTip while debugging
B e ol ¥] Enzble Edit and Continue
: g"“’“{’“;‘“" _ | Enable Native Edit and Continue
: N:g:tnl:_l:] c::::l:;:g y W Apply changes on {DI‘ITiI‘lLIE. Mative oniy)
b EOL Server Taols] Warn about stals code (Mative only]
b Test Templating O Lllow precormpiling (Native cnly) -
b Wab Forms Designar : y
B

Wbk Periermance Test Toals

o i Cancel

Step 3 — Go to the General Options under Debugging item on the left side.
Step 4 — Check the highlighted option, i.e, “Enable Ul Debugging Tools for XAML"
Step 5 — Press the OK button.

Now run any XAML application or use the following XAML code —

<Window x:Class = "XAMLTestBinding.Mainwindow"
xmlns = "http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml"

Title = "MainwWindow" Height = "350" Width = "604">

<StackPanel>
<ComboBox Name = "comboBox" Margin = "50" Width = "100">
<ComboBoxItem Content "Green"/>
<ComboBoxItem Content "Yellow" IsSelected = "True"/>
<ComboBoxItem Content "Orange" />

</ComboBox>
<TextBox Name = "textBox" Margin = "50" wWidth = "100"
Height="23" VerticalAlignment = "Top" Text = "{Binding ElementName = comboBox,
Path = SelectedItem.Content, Mode = TwoWay, UpdateSourceTrigger =
PropertyChanged}"
Background = "{Binding ElementName = comboBox, Path = SelectedItem.Content}">
</TextBox>
</StackPanel>
</Window>

Kl D)

When the application executes, it will show the Live Visual Tree where all the elements are shown
in a tree.

Live Visual Tree

Search Live Visual Tree (Alt+7) o)
4 o [MainWindow] B 23]
4 H [Border]| (24)
A o [AdornerDecorater] (23]
4 [P [ContentPresenter] 21}
4 B [StackPanel] B (207
4 B comboBox [ComboBox] & (8)
A # templateRoot [Grid] (7
& PART Popup [Popup]
4 8 fogglebutton [ToggleButtan] (3]
4 H templateRoot [Border] (2
A H splitBorder [Border] (1
& Arrow [Path]
4 I contentPresenter [ContentPresenter] (1
T [TextBlock]
4 textBox [TextBox] E (0]
2 H border [Border] (9
4 EB PART_ContentHost [ScrollViewer] 8
A i [Grid] N
O |Rectangle]
b ¥ [ScrollContentPresenter] (3)
= [ScrollBar]
g [ScrollBar]

< [AdornerLayer]

This Live Visual Tree shows the complete layout structure to understand where the Ul elements are
placed. But this option is only available in Visual Studio 2015. If you are using an older version of
Visual studio, then you can’t use this tool; however there is another tool which can be integrated
with Visual Studio such as XAML Spy for Visual Studio. You can download it from
http://xamlspy.com/download. We recommend you to download this tool if you are using an older

varcinn nf \/iciial CHuudin

| Loading [Mathjax/jax/output/HTML-CSS/jax.js |

http://xamlspy.com/download

