- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Write 'True' or 'False' and justify your answer in each of the following:
$ \cos \theta=\frac{a^{2}+b^{2}}{2 a b} $, where $ a $ and $ b $ are two distinct numbers such that $ a b>0 $.
Given:
\( \cos \theta=\frac{a^{2}+b^{2}}{2 a b} \), where \( a \) and \( b \) are two distinct numbers such that \( a b>0 \).
To do:
We have to find whether the given statement is true or false.
Solution:
$a$ and $b$ are two distinct numbers such that $ab>0$.
This implies,
$AM>GM$
AM and GM of two number $a$ and $b$ are $\frac{a+b}{2}$ and $\sqrt{a b}$
Therefore,
$\frac{a^{2}+b^{2}}{2}>\sqrt{a^{2} \times b^{2}}$
$a^{2}+b^{2}>2 a b$
$\frac{a^{2}+b^{2}}{2 a b}>1$
$\cos \theta=\frac{a^{2}+b^{2}}{2 a b}$
$\cos \theta>1$ which is not possible. [Since $-1 \leq \cos \theta \leq 1$]
Hence,
$\cos \theta≠\frac{a^{2}+b^{2}}{2 a b}$.
- Related Articles
- If \( tan \theta = \frac{a}{b} \), prove that\( \frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \).
- Write 'True' or 'False' and justify your answer in each of the following:\( \sqrt{\left(1-\cos ^{2} \theta\right) \sec ^{2} \theta}=\tan \theta \)
- If \( a \cos \theta+b \sin \theta=m \) and \( a \sin \theta-b \cos \theta=n \), prove that \( a^{2}+b^{2}=m^{2}+n^{2} \)
- Given that $sin\ \theta = \frac{a}{b}$, then $cos\ \theta$ is equal to(A) \( \frac{b}{\sqrt{b^{2}-a^{2}}} \)(B) \( \frac{b}{a} \)(C) \( \frac{\sqrt{b^{2}-a^{2}}}{b} \)(D) \( \frac{a}{\sqrt{b^{2}-a^{2}}} \)
- Write 'True' or 'False' and justify your answer in each of the following:\( (\tan \theta+2)(2 \tan \theta+1)=5 \tan \theta+\sec ^{2} \theta \).
- If $\frac{x}{a}cos\theta+\frac{y}{b}sin\theta=1$ and $\frac{x}{a}sin\theta-\frac{y}{b}cos\theta=1$, prove that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
- State whether the following statements are true or false. Justify your answer.Points \( A(-6,10), B(-4,6) \) and \( C(3,-8) \) are collinear such that \( A B=\frac{2}{9} A C \).
- Are the following pair of linear equations consistent? Justify your answer.\( 2 a x+b y=a \)\( 4 a x+2 b y-2 a=0 ; \quad a, b≠0 \)
- If a and b are two odd positive integers such that a $>$ b, then prove that one of the two numbers $\frac{a\ +\ b}{2}$ and $\frac{a\ -\ b}{2}$ is odd and the other is even.
- If \( \operatorname{cosec} \theta-\sin \theta=a^{3}, \sec \theta-\cos \theta=b^{3} \), prove that \( a^{2} b^{2}\left(a^{2}+b^{2}\right)=1 \)
- Write 'True' or 'False' and justify your answer in each of the following:If \( \cos \mathrm{A}+\cos ^{2} \mathrm{~A}=1 \), then \( \sin ^{2} \mathrm{~A}+\sin ^{4} \mathrm{~A}=1 \).
- Write 'True' or 'False' and justify your answer in each of the following:The value of \( 2 \sin \theta \) can be \( a+\frac{1}{a} \), where \( a \) is a positive number, and \( a \neq 1 \)
- Find acute angles \( A \) and \( B \), if \( \sin (A+2 B)=\frac{\sqrt{3}}{2} \) and \( \cos (A+4 B)=0, A>B \).
- Prove the following identities:If \( x=a \sec \theta+b \tan \theta \) and \( y=a \tan \theta+b \sec \theta \), prove that \( x^{2}-y^{2}=a^{2}-b^{2} \)
- Prove that:\( \sin ^{2} A \cos ^{2} B-\cos ^{2} A \sin ^{2} B=\sin ^{2} A-\sin ^{2} B \)

Advertisements