- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Write equations for the following statements:
$(i)$ The sum of numbers x and 4 is 9.
$(ii)$ 2 subtracted from y is 8.
$(iii)$ Ten times a is 70.
$(iv)$ The number b divided by 5 gives 6.
$(v)$ Three-fourth of t is 15.
$(vi)$ Seven times m plus 7 gets you 77.
$(vii)$ One-fourth of a number x minus 4 gives 4.
$(viii)$ If you take away 6 from 6 times y, you get 60.
$(ix)$ If you add 3 to one-third of z, you get 30.
To do:
We have to write equations for the given statements.
Solution:
(i) The sum of numbers $x$ and 4 is 9. This statement can be written in the form of an equation as:
$\boxed{x+4=9}$
(ii) 2 subtracted from $y$ is 8. This statement can be written in the form of an equation as:
$\boxed{y-2=8}$
(iii) Ten times $a$ is 70.
This statement can be written in the form of an equation as:
$\boxed{10a=70}$
(iv) The number $b$ divided by 5 gives 6.
This statement can be written in the form of an equation as:
$\boxed{\frac{b}{5}=6}$
(v) Three-fourth of $t$ is 15.
This statement can be written in the form of an equation as:
$\boxed{\frac{3t}{4}=15}$
(vi) Seven times $m$ plus 7 gets you 77.
This statement can be written in the form of an equation as:
$\boxed{7m+7=77}$
(vii) One-fourth of a number $x$ minus 4 gives 4.
This statement can be written in the form of an equation as:
$\boxed{\frac{x}{4}-4=4}$
(viii) If you take away 6 from 6 times $y$, you get 60.
This statement can be written in the form of an equation as:
$\boxed{6y-6=60}$
(ix) If you add 3 to one-third of $z$, you get 30.
This statement can be written in the form of an equation as:
$\boxed{\frac{z}{3}+3=30}$
- Related Articles
- Verify the property: $x \times(y + z) = x \times y + x \times z$ by taking:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- Find the products of the following monomials.a. \( (-6) x^{2} \times 7 x y \)b. \( 2 a b \times(-6) a b \)c. \( \left(-4 x^{2} y^{2}\right) \times 3 x^{2} y^{2} \)d. \( 9 x y z \times 2 z^{3} \)
- Multiply and reduce to lowest form and convert into a mixed fraction:(i) $7\times\frac{1}{5}$(ii) $ 4\times\frac{1}{3}$(iii) $2\times\frac{6}{7}$ (iv) $5\times\frac{2}{9}$ (v) $\frac{2}{3}\times 4$(vi) $\frac{5}{2}\times 6$ (vii) $11\times\frac{4}{7}$ (viii) $20\times\frac{4}{5}$ (ix) $13\frac{1}{3}$ (x) $15\times\frac{3}{5}$
- Get the algebraic expressions in the following cases using variables, constants and arithmetic operations.$(i)$ Subtraction of $z$ from $y$.$(ii)$ One-half of the sum of numbers x and y.$(iii)$ The number z multiplied by itself.$(iv)$ One-fourth of the product of numbers p and q.$(v)$ Numbers x and y both squared and added.$(vi)$ Number 5 added to three times the product of numbers m and n.$(viii)$ Product of numbers y and z subtracted from 10.$(viii)$ Sum of numbers a and b subtracted from their product.
- Find:$(i).\ 0.2 \times 6$$(ii).\ 8 \times 4.6$$(iii).\ 2.71 \times 5$ $(iv).\ 20.1 \times 4$$(v).\ 0.05 \times 7$$(vi). 211.02 \times 4$$(vii).\ 2 \times 0.86$
- Write the following numbers in the usual form :(i) $4.83 \times 10^7$(ii) $3.02 \times 10^{-6}$(iii) $4.5 \times 10^4$(iv) $3 \times 10^{-8}$(v) $1.0001 \times 10^9$(vi) $5.8 \times 10^2$(vii) $3.61492 \times 10^6$(viii) $3.25 \times 10^{-7}$
- Using laws of exponents, simplify and write the answer in exponential form:$(i)$. $3^2\times3^4\times3^8$$(ii)$. $6^{15}\div6^{10}$$(iii)$. $a^3\times a^2$$(iv)$. $7^x\times7^2$$(v)$. $(5^2)^3\div5^3$$(vi)$. $2^5\times5^5$$(viii)$. $a^4\times b^4$$(viii)$. $(3^4)^3$$(ix)$. $(2^{20}\div2^{15})\times2^3$$(x)$. $8^t\div8^2$
- Verify the property: $x \times (y \times z) = (x \times y) \times z$ by taking:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- The reduced form of $36 x^{2}-81 y^{2}$ isi$(6 x+9 y)(6 x-9 y) $ii$(6 x+9 y)(4 x-5) $iii.$(9 x+6 y)(9 x-6 y)$iv. $(9 y-6 x)(9 y+6 x) $
- Find the products of the following:(i). $(-4) \times (-5) \times (-8) \times (-10)$(ii). $(-6) \times (-5) \times (-7) \times (-2) \times (-3)$
- Find the multiplicative inverse (reciprocal) of each of the following rational numbers:(i) 9(ii) \( -7 \)(iii) \( \frac{12}{5} \)(iv) \( \frac{-7}{9} \)(v) \( \frac{-3}{-5} \)(vi) \( \frac{2}{3} \times \frac{9}{4} \)(vii) \( \frac{-5}{8} \times \frac{16}{15} \)(viii) \( -2 \times \frac{-3}{5} \)(ix)-1 \)(x) \frac{0}{3} \)(xi) 1
- Find the value of x.(i) $3^2 \times (-4)^2 = (-12)^{2x}$(ii) $(\frac{9}{4})^{3} \times (\frac{8}{9})^{3}=2^{6 x}$
- Represent number line for the following:\( a) 6+5 \)b) \( 4 \times 5 \)c) \( 7-3 \)d) \( 2 \times 9 \)
- Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
- Set up equations and solve them to find the unknown numbers in the following cases:$(a)$ Add 4 to eight times a number; you get 60.$(b)$ One-fifth of a number minus 4 gives 3.$(c)$ If I take three-fourths of a number and add 3 to it, I get 21.$(d)$ When I subtracted 11 from twice a number, the result was 15.$(e)$ Munna subtracts thrice the number of notebooks he has from 50, he finds the result to be 8.$(f)$ Ibenhal thinks of a number. If she adds 19 to it and divides the sum by 5, she will get 8.$(g)$ Anwar thinks of a number. If he takes away 7 from $\frac{5}{2}$ of the number, the result is 23.
