Write each of the following as decimals.
(a) $ 20+9+\frac{4}{10}+\frac{1}{100} $
(b) $ 137+\frac{5}{100} $
(c) $ \frac{7}{10}+\frac{6}{100}+\frac{4}{1000} $
(d) $ 23+\frac{2}{10}+\frac{6}{1000} $
(e) $ 700+20+5+\frac{9}{100} $
To do:
We have to express the given expressions as decimals.
Solution:
(a) $20+9+\frac{4}{10}+\frac{1}{100}$
$=20+9+0.4+0.01$
$=29.41$
(b) $137+\frac{5}{100}=137+0.05$
$=137.05$
(c) $\frac{7}{10}+\frac{6}{100}+\frac{4}{1000}=0.7+0.06+0.004$
$=0.764$
(d) $23+\frac{2}{10}+\frac{6}{1000}=23+0.2+0.006$
$=23.206$
(e) $700+20+5+\frac{9}{100}=700+20+5+0.09$
$=725.09$
- Related Articles
- Write each of the following as a decimal.(a) \( 200+30+5+\frac{2}{10}+\frac{9}{100} \)(b) \( 50+\frac{1}{10}+\frac{6}{100} \)(c) \( 16+\frac{3}{10}+\frac{5}{1000} \)
- Express the following as improper fractions:(a) \( 7 \frac{3}{4} \)(b) \( 5 \frac{6}{7} \)(c) \( 2 \frac{5}{6} \)(d) \( 10 \frac{3}{5} \)(e) \( 9 \frac{3}{7} \)(f) \( 8 \frac{4}{9} \)
- Add:$\frac{1}{10} +\frac{1}{20} +\frac{1}{40} +\frac{1}{100}$.
- Write each of the following as decimals:(a) \( \frac{5}{10} \)(b) \( 3+\frac{7}{10} \)(c) \( 200+60+5+\frac{1}{10} \)(d) \( 70+\frac{8}{10} \)(e) \( \frac{88}{10} \)(f) \( 4 \frac{2}{10} \)(g) \( \frac{3}{2} \)(h) \( \frac{2}{5} \)(i) \( \frac{12}{5} \)(j) \( 3 \frac{3}{5} \)(k) \( 4 \frac{1}{2} \)
- Simplify each of the following and write as a rational number of the form:(i) \( \frac{3}{4}+\frac{5}{6}+\frac{-7}{8} \)(ii) \( \frac{2}{3}+\frac{-5}{6}+\frac{-7}{9} \)(iii) \( \frac{-11}{2}+\frac{7}{6}+\frac{-5}{8} \)(iv) \( \frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15} \)(v) \( \frac{-9}{10}+\frac{22}{15}+\frac{13}{-20} \)(vi) \( \frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3 \)
- Solve the following:$2+\frac{3}{10}+\frac{4}{100}$.
- Find:(i) $\frac{1}{4}$ of (a) $\frac{1}{4}$(b) $\frac{3}{5}$ (c) $\frac{4}{3}$(ii) $\frac{1}{7}$ of (a) $\frac{2}{9}$ (b) $\frac{6}{5}$ (c) $\frac{3}{10}$
- i)a) $\frac{1}{4} of \frac{1}{4}$b) $\frac{1}{4} of \frac{3}{5} $c) $\frac{1}{4} of \frac{4}{3} $ii) a) $\frac{1}{ 7} of \frac{2}{ 9}$b) $\frac{1}{ 7} of \frac{6}{5}$c) $\frac{1}{ 7} of \frac{3}{10}$
- Simplify:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- Solve The Following(a) \( \left(-2 \frac{1}{5}\right) \div\left(-\frac{6}{5}\right) \)(b) \( \frac{14}{9} \times \frac{7}{10} \)(c) \( 6 \frac{1}{4}+7 \frac{2}{5} \)\( (d)\left(-1 \frac{2}{3}\right)-\left(-6 \frac{4}{5}\right) \)
- Write four more rational numbers in each of the following patterns:$(i)$. $\frac{-3}{5},\ \frac{-6}{10},\ \frac{-9}{15},\ \frac{-12}{20}$........$(ii)$. $\frac{-1}{4},\ \frac{-2}{8},\ \frac{-3}{12}$.....$(iii)$. $\frac{-1}{6},\ \frac{2}{-12},\ \frac{3}{-18},\ \frac{4}{-24}$......$(iv)$. $\frac{-2}{3},\ \frac{2}{-3},\ \frac{4}{-6},\ \frac{6}{-9}$.....
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Express each of the following as a rational number of the form $\frac{p}{q}$(i) \( -\frac{8}{3}+\frac{-1}{4}+\frac{-11}{6}+\frac{3}{8}-3 \)(ii) \( \frac{6}{7}+1+\frac{-7}{9}+\frac{19}{21}+\frac{-12}{7} \)(iii) \( \frac{15}{2}+\frac{9}{8}+\frac{-11}{3}+6+\frac{-7}{6} \)(iv) \( \frac{-7}{4}+0+\frac{-9}{5}+\frac{19}{10}+\frac{11}{14} \)(v) \( \frac{-7}{4}+\frac{5}{3}+\frac{-1}{2}+\frac{-5}{6}+2 \)
- How quickly can you do this? Fill appropriate sign. ( '')(a) \( \frac{1}{2} \square \frac{1}{5} \)(b) \( \frac{2}{4} \square \frac{3}{6} \)(c) \( \frac{3}{5} \square \frac{2}{3} \)(d) \( \frac{3}{4} \square \frac{2}{8} \)(e) \( \frac{3}{5} \square \frac{6}{5} \)(f) \( \frac{7}{9} \square \frac{3}{9} \)(g) \( \frac{1}{4} \square \frac{2}{8} \)(h) \( \frac{6}{10} \square \frac{4}{5} \)(i) \( \frac{3}{4} \square \frac{7}{8} \)(j) \( \frac{6}{10} \square \frac{3}{5} \)(k) \( \frac{5}{7} \square \frac{15}{21} \)
- Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
Kickstart Your Career
Get certified by completing the course
Get Started