# Write down the decimal expansions of those rational numbers in Question 1 above which have terminating decimal expansions.

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

To do:

Here, we have to write the decimal expansions of the given rational in numbers Question 1.

Solution:

(i) $\frac{13}{3125}=\frac{13}{5^5}$

Multiply the numerator and denominator by $2^5$ so that the denominator becomes a multiple of $10^r$, where r is any positive integer.

Therefore,

$\frac{13}{3125}=\frac{13}{5^5}$

$=\frac{13\times2^5}{5^5\times2^5}$

$=\frac{13\times32}{(2\times5)^5}$

$=\frac{416}{10^5}$

$=\frac{416}{100000}$

$=0.00416$

The decimal expansion of the given rational number is $0.00416$.

(ii) $\frac{17}{8}=\frac{17}{2^3}$

Multiply the numerator and denominator by $5^3$ so that the denominator becomes a multiple of $10^r$, where r is any positive integer.

Therefore,

$\frac{17}{8}=\frac{17}{2^3}$

$=\frac{17\times5^3}{2^3\times5^3}$

$=\frac{17\times125}{(2\times5)^3}$

$=\frac{2125}{10^3}$

$=\frac{2125}{1000}$

$=2.125$

The decimal expansion of the given rational number is $2.125$.

(iii) $\frac{15}{1600}=\frac{15}{2^6\times5^2}$

Multiply the numerator and denominator by $5^4$ so that the denominator becomes a multiple of $10^r$, where r is any positive integer.

Therefore,

$\frac{15}{1600}=\frac{15}{2^6\times5^2}$

$=\frac{15\times5^4}{2^6\times5^2\times5^4}$

$=\frac{15\times625}{(2\times5)^6}$

$=\frac{9375}{10^6}$

$=\frac{9375}{1000000}$

$=0.009375$

The decimal expansion of the given rational number is $0.009375$.

(iv) $\frac{23}{2^{3} \times 5^{2}}$

Multiply the numerator and denominator by $5^1$ so that the denominator becomes a multiple of $10^r$, where r is any positive integer.

Therefore,

$\frac{23}{2^{3} \times 5^{2}}=\frac{23\times5^1}{2^3\times5^2\times5^1}$

$=\frac{23\times5}{(2\times5)^3}$

$=\frac{115}{10^3}$

$=\frac{115}{1000}$

$=0.115$

The decimal expansion of the given rational number is $0.115$.

(v) $\frac{6}{15}=\frac{2}{5}$

Multiply the numerator and denominator by $2^1$ so that the denominator becomes a multiple of $10^r$, where r is any positive integer.

Therefore,

$\frac{6}{15}=\frac{2}{5}$

$=\frac{2\times2^1}{(5\times2)^1}$

$=\frac{4}{10^1}$

$=\frac{4}{10}$

$=0.4$

The decimal expansion of the given rational number is $0.4$.

(vi) $\frac{35}{50}=\frac{5\times7}{5\times10}$

$=\frac{7}{10}$

$=0.7$

The decimal expansion of the given rational number is $0.7$.

Updated on 10-Oct-2022 13:19:30