- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Which of the following pairs represent the same rational number?
$(i)$. $-\frac{7}{21}$ and $\frac{3}{9}$
$(ii)$. $-\frac{16}{20}$ and $\frac{20}{-25}$ ​
$(iii)$. $\frac{-2}{-3}$ and $\frac{2}{3}$
$(iv)$. $\frac{-3}{5}$ and $\frac{-12}{20}$
$(v)$. $\frac{8}{5}$ and $\frac{-24}{15}$
$(vi)$. $\frac{1}{3}$ and $\frac{-1}{9}$
$(viii)$ $\frac{-5}{-9}$ and $\frac{5}{-9}$
Given: Pairs of rational numbers:
$(i)$. $-\frac{7}{21}$ and $\frac{3}{9}$
$(ii)$. $-\frac{16}{20}$ and $\frac{20}{-25}$
$(iii)$. $\frac{-2}{-3}$ and $\frac{2}{3}$
$(iv)$. $\frac{-3}{5}$ and $\frac{-12}{20}$
$(v)$. $\frac{8}{-5}$ and $\frac{-24}{15}$
$(vi)$. $\frac{1}{3}$ and $\frac{-1}{9}$
$(viii)$ $\frac{-5}{-9}$ and $\frac{5}{-9}$
To do: To find pairs that represent the same rational number.
Solution: $(i)$. $-\frac{7}{21}$ and $\frac{3}{9}$
Given pairs are: $(i)$. $-\frac{7}{21}$ and $\frac{3}{9}$
On reducing the given fractions to the simplest form:
$-\frac{7}{21}$
$= -\frac{1}{3}$
And $\frac{3}{9}$
$= \frac{1}{3}$
On comparing both fractions we have: $-\frac{1}{3} ≠ \frac{1}{3}$
Therefore, pairs $-\frac{7}{21}$ and $\frac{3}{9}$ do not represent the same rational numbers.
$(ii)$. $-\frac{16}{20}$ and $\frac{20}{(-25)}$
Given pair of rational numbers : $-\frac{16}{20}$ and $\frac{20}{(-25)}$
On reducing both rational numbers to their simplest form:
$-\frac{16}{20}$
$= -\frac{4}{5}$
And $\frac{20}{(-25)} = \frac{4}{(-5)}$
On comparing the simplest form of given pair of rational numbers we have:
$-\frac{4}{5} = \frac{4}{(-5)}$
Therefore, $-\frac{16}{20}$ and $\frac{20}{(-25)}$ represents the pair of same rational numbers.
$(iii)$. $-\frac{2}{(-3)}$ and $\frac{2}{3}$
Given pair of rational numbers : $-\frac{2}{(-3)}$ and $\frac{2}{3}$
On reducing both rational numbers to their simplest form:
$-\frac{2}{(-3)} = \frac{2}{3}$ and $\frac{2}{3} = \frac{2}{3}$
On comparing the simplest form of given pair of rational numbers we have:, $\frac{-2}{-3} = \frac{2}{3}$
Therefore, $-\frac{2}{(-3)}$ and $\frac{2}{3}$ represents the pair of same rational numbers.
$(iv)$. $-\frac{3}{5}$ and $-\frac{12}{20}$
Given pair of rational numbers : $-\frac{3}{5}$ and $-\frac{12}{20}$
On reducing both rational numbers to their simplest form:
$-\frac{3}{5} = -\frac{3}{5}$
And $-\frac{12}{20} = -\frac{3}{5}$
On comparing the simplest form of given pair of rational numbers we have: $-\frac{3}{5} = -\frac{3}{5}$
Therefore, $-\frac{3}{5}$ and $-\frac{12}{20}$ represent the pair of same rational numbers.
$(v)$. $\frac{8}{(-5)}$ and $-\frac{24}{15}$
Given pair of rational numbers: $\frac{8}{(-5)}$ and $-\frac{24}{15}$
On reducing both rational numbers to their simplest form:
$\frac{8}{(-5)} = -\frac{8}{5}$
And $-\frac{24}{15} = -\frac{8}{5}$
On comparing the simplest form of given pair of rational numbers we have: $\frac{8}{-5} = -\frac{8}{5}$
Therefore, $\frac{8}{-5}$ and $-\frac{24}{15}$ represent the pair of the same rational numbers.
$(vi)$. $\frac{1}{3}$ and $-\frac{1}{9}$
Given pair of rational numbers: $\frac{1}{3}$ and $-\frac{1}{9}$
On reducing both rational numbers to their simplest form:
$\frac{1}{3} = \frac{1}{3}$
And $-\frac{1}{9} = -\frac{1}{9}$
On comparing the simplest form of given pair of rational numbers we have: $\frac{1}{3} ≠ -\frac{1}{9}$
Therefore, $\frac{1}{3}$ and $-\frac{1}{9}$ do not represent the pair of the same rational numbers.
$(vii)$. $-\frac{5}{(-9)}$ and $\frac{5}{(-9)}$
Given pair of rational numbers: $-\frac{5}{(-9)}$ and $\frac{5}{(-9)}$
On reducing both rational numbers to their simplest form:
$-\frac{5}{(-9)} = \frac{5}{9}$ and $\frac{5}{(-9)} = -\frac{5}{9}$
On comparing the simplest form of given pair of rational numbers we have: $\frac{5}{9} ≠ -\frac{5}{9}$
Therefore, $\frac{-5}{-9}$ and $\frac{5}{-9}$ do not represent the pair of the same rational numbers.
- Related Articles
- Re-arrange suitably and find the sum in each of the following:(i) \( \frac{11}{12}+\frac{-17}{3}+\frac{11}{2}+\frac{-25}{2} \)(ii) \( \frac{-6}{7}+\frac{-5}{6}+\frac{-4}{9}+\frac{-15}{7} \)(iii) \( \frac{3}{5}+\frac{7}{3}+\frac{9}{5}+\frac{-13}{15}+\frac{-7}{3} \)(iv) \( \frac{4}{13}+\frac{-5}{8}+\frac{-8}{13}+\frac{9}{13} \)(v) \( \frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5} \)(vi) \( \frac{1}{8}+\frac{5}{12}+\frac{2}{7}+\frac{7}{12}+\frac{9}{7}+\frac{-5}{16} \)
- Simplify:(i) \( \frac{8}{9}+\frac{-11}{5} \)(ii) \( 3+\frac{5}{-7} \)(iii) \( \frac{1}{-12} \) and \( \frac{2}{-15} \)(iv) \( \frac{-8}{19}+\frac{-4}{57} \)(v) \( \frac{7}{9}+\frac{3}{-4} \)(vi) \( \frac{5}{26}+\frac{11}{-39} \)(vii) \( \frac{-16}{9}+\frac{-5}{12} \)(viii) \( \frac{-13}{8}+\frac{5}{36} \)(ix) \( 0+\frac{-3}{5} \)(x) \( 1+\frac{-4}{5} \)(xi) \( \frac{-5}{16}+\frac{7}{24} \)
- Simplify each of the following and write as a rational number of the form:(i) \( \frac{3}{4}+\frac{5}{6}+\frac{-7}{8} \)(ii) \( \frac{2}{3}+\frac{-5}{6}+\frac{-7}{9} \)(iii) \( \frac{-11}{2}+\frac{7}{6}+\frac{-5}{8} \)(iv) \( \frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15} \)(v) \( \frac{-9}{10}+\frac{22}{15}+\frac{13}{-20} \)(vi) \( \frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3 \)
- Which of the following pairs represent the same rational number?(i) \( \frac{-7}{21} \) and \( \frac{3}{9} \)(ii) \( \frac{-16}{20} \) and \( \frac{20}{-25} \)
- Solve:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- Add the following rational numbers:(i)M/b> \( \frac{3}{4} \) and \( \frac{-5}{8} \)(ii) \( \frac{5}{-9} \) and \( \frac{7}{3} \)(iii) \( -3 \) and \( \frac{3}{5} \)(iv) \( \frac{-7}{27} \) and \( \frac{11}{18} \)(v) \( \frac{31}{-4} \) and \( \frac{-5}{8} \)(vi) \( \frac{5}{36} \) and \( \frac{-7}{12} \)(vii) \( \frac{-5}{16} \) and \( \frac{7}{24} \)(viii) \( \frac{7}{-18} \) and \( \frac{8}{27} \)
- Find the multiplicative inverse (reciprocal) of each of the following rational numbers:(i) 9(ii) \( -7 \)(iii) \( \frac{12}{5} \)(iv) \( \frac{-7}{9} \)(v) \( \frac{-3}{-5} \)(vi) \( \frac{2}{3} \times \frac{9}{4} \)(vii) \( \frac{-5}{8} \times \frac{16}{15} \)(viii) \( -2 \times \frac{-3}{5} \)(ix)-1 \)(x) \frac{0}{3} \)(xi) 1
- Find:(i) $\frac{2}{5}\div\frac{1}{2}$(ii) $\frac{4}{9}\div\frac{2}{3}$(iii) $\frac{3}{7}\div\frac{8}{7}$(iv) $2\frac{1}{3}\div\frac{3}{5}$(v) $3\frac{1}{2}\div\frac{8}{3}$(vi) $\frac{2}{5}\div1\frac{1}{2}$(vii) $3\frac{1}{5}\div1\frac{2}{3}$(viii) $2\frac{1}{5}\div1\frac{1}{5}$
- Using commutativity and associativity of addition of rational numbers, express each of the following as a rational number:(i) \( \frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3} \)(ii) \( \frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9} \)(iii) \( \frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3} \)(iv) \( \frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{21} \)
- Find the sum:$(i)$. $\frac{5}{4}+(-\frac{11}{4})$$(ii)$. $\frac{5}{3}+\frac{3}{5}$$(iii)$. $\frac{-9}{10}+\ \frac{22}{15}$$(iv)$. $\frac{-3}{11}+\frac{5}{9}$$(v)$. $\frac{-8}{19}+(-\frac{2}{57})$$(vi)$. $-\frac{2}{3}+0$$(vii)$. $-2\frac{1}{3}\ +\ 4\frac{3}{5}$
- Find the product:$(i)$. $\frac{9}{2}\times(-\frac{7}{4})$$(ii)$. $\frac{3}{10}\times(-9)$$(iii)$. $-\frac{6}{5}\times\frac{9}{11}$$(iv)$. $\frac{3}{7}\times(-\frac{2}{5})$$(v)$. $\frac{3}{11}\times\ \frac{2}{5}$$(vi)$. $\frac{3}{-5}\times(-\frac{5}{3})$
- Simplify:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- Write the following rational numbers in ascending order:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
- Write four more rational numbers in each of the following patterns:$(i)$. $\frac{-3}{5},\ \frac{-6}{10},\ \frac{-9}{15},\ \frac{-12}{20}$........$(ii)$. $\frac{-1}{4},\ \frac{-2}{8},\ \frac{-3}{12}$.....$(iii)$. $\frac{-1}{6},\ \frac{2}{-12},\ \frac{3}{-18},\ \frac{4}{-24}$......$(iv)$. $\frac{-2}{3},\ \frac{2}{-3},\ \frac{4}{-6},\ \frac{6}{-9}$.....
- Multiply and reduce to lowest form (if\ possible):(i) $\frac{2}{3}\times2\frac{2}{3}$(ii) $\frac{2}{7}\times\frac{7}{9}$(iii) $\frac{3}{8}\times\frac{6}{4}$(iv) $\frac{9}{5}\times\frac{3}{5}$(v) $\frac{1}{3}\times\frac{15}{8}$(vi) $\frac{11}{2}\times\frac{3}{10}$(vii) $\frac{4}{5}\times\frac{12}{7}$
