# Which is greater?(i) $0.5$ or $0.05$(ii) $0.7$ or $0.5$(iii) $7$ or $0.7$(iv) $1.37$ or $1.49$(v) $2.03$ or $2.30$(vi) $0.8$ or $0.88$

Given:

Given numbers are:

(i) $0.5$ or $0.05$

(ii) $0.7$ or $0.5$

(iii) $7$ or $0.7$

(iv) $1.37$ or $1.49$

(v) $2.03$ or $2.30$

(vi) $0.8$ or $0.88$

To do:

We have to find the greater number in each of the given numbers.

Solution:

(i) $0.5$ or $0.05$

$0.5$ or $0.05$

$0.5=\frac{5}{10}$ or $0.05=\frac{5}{100}$

On converting decimals them into like fractions, we get

$0.5=\frac{5}{10}\times\frac{10}{10}$ or $0.05=\frac{5}{100}\times\frac{1}{1}$

$\frac{50}{100}$ or $\frac{5}{100}$

$50>5$

This implies,

$0.5>0.05$

Therefore,0.5 is greater than 0.05.

(ii) $0.7$ or $0.5$

$0.7=\frac{7}{10}$ or $0.5=\frac{5}{10}$

$7>5$

Hence, $\frac{7}{10}>\frac{5}{10}$

Therefore, $0.7$ is greater than $0.5$.

(iii) $7$ or $0.7$

$7$ or $\frac{7}{10}$

$7=\frac{7}{1}\times\frac{10}{10}$ or $\frac{7}{10}$

$\frac{70}{10}$ or $\frac{7}{10}$

$70>7$

This implies,

$7 > 0.7$

Therefore, 7 is greater.

(iv) $1.37$ or $1.49$

$1.37=\frac{137}{100}$ or $1.49=\frac{149}{100}$

$\frac{137}{100}$ or $\frac{149}{100}$

$137<149$

This implies,

$1.37$ < $1.49$

Hence, $1.49$ is greater.

(v) $2.03$ or $2.30$

$2.03=\frac{203}{100}$ or $2.30=\frac{230}{100}$

$\frac{203}{100}$ or $\frac{230}{100}$

$203<230$

Therefore,

$2.03 < 2.30$

Hence, $2.30$ is greater.

(vi) $0.8$ or $0.88$

$0.8=\frac{8}{10}$ or $0.88=\frac{88}{100}$

On converting them into like fractions, we get

$\frac{8}{10}\times\frac{10}{10}$ or $\frac{88}{100}$

$\frac{80}{100}$ or $\frac{88}{100}$

$80<88$

Therefore, $0.8$ < $0.88$.

Hence, $0.88$ is greater.