VB.NET - FUNCTIONS

A procedure is a group of statements that together perform a task when called. After the
procedure is executed, the control returns to the statement calling the procedure. VB.Net has two
types of procedures:

e Functions
e Sub procedures or Subs

Functions return a value, whereas Subs do not return a value.

Defining a Function

The Function statement is used to declare the name, parameter and the body of a function. The
syntax for the Function statement is:

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType
[Statements]
End Function

Where,

e Modifiers: specify the access level of the function; possible values are: Public, Private,
Protected, Friend, Protected Friend and information regarding overloading, overriding,
sharing, and shadowing.

e FunctionName: indicates the name of the function
e ParameterlList: specifies the list of the parameters

e ReturnType: specifies the data type of the variable the function returns
Example

Following code snippet shows a function FindMax that takes two integer values and returns the
larger of the two.

Function FindMax(ByVal numl As Integer, ByVal num2 As Integer) As Integer
' local variable declaration */
Dim result As Integer
If (num1 > num2) Then
result = numl
Else
result = num2
End If
FindMax = result
End Function

Function Returning a Value

In VB.Net, a function can return a value to the calling code in two ways:
¢ By using the return statement
¢ By assigning the value to the function name

The following example demonstrates using the FindMax function:

Module myfunctions
Function FindMax(ByVal numl As Integer, ByVal num2 As Integer) As Integer
' local variable declaration */
Dim result As Integer

http://www.tutorialspoint.com/vb.net/vb.net_functions.htm

If (num1 > num2) Then
result = numi
Else
result = num2
End If
FindMax = result
End Function
Sub Main()
Dim a As Integer
Dim b As Integer
Dim res As Integer
res = FindMax(a, b)
Console.WritelLine("Max value is : {0}", res)
Console.ReadLine()
End Sub
End Module

100
200

When the above code is compiled and executed, it produces the following result:

Max value is : 200

Recursive Function

A function can call itself. This is known as recursion. Following is an example that calculates
factorial for a given number using a recursive function:

Module myfunctions
Function factorial (ByVal num As Integer) As Integer
' local variable declaration */
Dim result As Integer
If (num = 1) Then
Return 1
Else
result = factorial(num - 1) * num
Return result
End If
End Function
Sub Main()
'calling the factorial method
Console.WritelLine("Factorial of 6 is : {0}", factorial(6))
Console.WriteLine("Factorial of 7 is : {0}", factorial(7))
Console.WritelLine("Factorial of 8 is : {0}", factorial(8))
Console.ReadlLine()
End Sub
End Module

When the above code is compiled and executed, it produces the following result:

Factorial of 6 is: 720
Factorial of 7 is: 5040
Factorial of 8 is: 40320

Param Arrays

At times, while declaring a function or sub procedure, you are not sure of the number of
arguments passed as a parameter. VB.Net param arrays orparameterarrays come into help at these
times.

The following example demonstrates this:

Module myparamfunc
Function AddElements(ParamArray arr As Integer()) As Integer
Dim sum As Integer = 0
Dim i As Integer = 0
For Each i In arr
sum += i

Next i
Return sum

End Function

Sub Main()
Dim sum As Integer
sum = AddElements(512, 720, 250, 567, 889)
Console.WritelLine("The sum is: {03}", sum)
Console.ReadLine()

End Sub

End Module

When the above code is compiled and executed, it produces the following result:

The sum is: 2938

Passing Arrays as Function Arguments
You can pass an array as a function argument in VB.Net. The following example demonstrates this:

Module arrayParameter
Function getAverage(ByVal arr As Integer(), ByVal size As Integer) As Double
'local variables
Dim i As Integer
Dim avg As Double
Dim sum As Integer = 0
For i = @ To size - 1
sum += arr (i)
Next 1
avg = sum / size
Return avg
End Function
Sub Main()
" an int array with 5 elements '
Dim balance As Integer() = {1000, 2, 3, 17, 50}
Dim avg As Double
'pass pointer to the array as an argument
avg = getAverage(balance, 5)
' output the returned value '
Console.WritelLine("Average value is: {0} ", avg)
Console.ReadLine()
End Sub
End Module

When the above code is compiled and executed, it produces the following result:

Averane value is: 214.4
Loading [Math)ax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

