VB.NET - DIRECTIVES

The VB.Net compiler directives give instructions to the compiler to preprocess the information
before actual compilation starts.

All these directives begin with #, and only white-space characters may appear before a directive
on a line. These directives are not statements.

VB.Net compiler does not have a separate preprocessor; however, the directives are processed as

if there was one. In VB.Net, the compiler directives are used to help in conditional compilation.
Unlike C and C++ directives, they are not used to create macros.

Compiler Directives in VB.Net

VB.Net provides the following set of compiler directives:

The #Const Directive

The #ExternalSource Directive

The #If...Then...#Else Directives

The #Region Directive
The #Const Directive
This directive defines conditional compiler constants. Syntax for this directive is:

#Const constname = expression

Where,
e constname: specifies the name of the constant. Required.

e expression: itis either a literal, or other conditional compiler constant, or a combination
including any or all arithmetic or logical operators exceptls.

For example,

#Const state = "WEST BENGAL"

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives
#Const age = True
Sub Main()
#1f age Then
Console.WritelLine("You are welcome to the Robotics Club")
#End If
Console.ReadKey ()
End Sub
End Module

When the above code is compiled and executed, it produces the following result:

You are welcome to the Robotics Club

The #ExternalSource Directive

http://www.tutorialspoint.com/vb.net/vb.net_directives.htm

This directive is used for indicating a mapping between specific lines of source code and text
external to the source. It is used only by the compiler and the debugger has no effect on code
compilation.

This directive allows including external code from an external code file into a source code file.

Syntax for this directive is:

#ExternalSource(StringLiteral , IntLiteral)
[LogicallLine]
#End ExternalSource

The parameters of #ExternalSource directive are the path of external file, line number of the first
line, and the line where the error occurred.

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives
Public Class ExternalSourceTester

Sub TestExternalSource()

#ExternalSource("c:\vbprogs\directives.vb", 5)
Console.WriteLine("This is External Code. ")
#End ExternalSource

End Sub
End Class

Sub Main()
Dim t As New ExternalSourceTester ()
t.TestExternalSource()
Console.WriteLine("In Main.")
Console.ReadKey ()

End Sub

When the above code is compiled and executed, it produces the following result:

This is External Code.
In Main.

The #If...Then...#Else Directives

This directive conditionally compiles selected blocks of Visual Basic code.

Syntax for this directive is:

#If expression Then
statements

[#ElseIf expression Then
[statements |

#ElseIf expression Then
[statements]]
[#Else
[statements]]
#End If

For example,

#Const TargetOS = "Linux"
#If TargetOS = "Windows 7" Then

' Windows 7 specific code
#ElseIf TargetO0S = "WinXP" Then

" Windows XP specific code
#Else

' Code for other 0S
#End if

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives
#Const classCode = 8

Sub Main()
#If classCode = 7 Then

Console.WriteLine("Exam Questions for Class VII")
#ElseIf classCode = 8 Then

Console.WritelLine("Exam Questions for Class VIII")
#Else

Console.WritelLine("Exam Questions for Higher Classes")
#End If

Console.ReadKey ()

End Sub
End Module

When the above code is compiled and executed, it produces the following result:

Exam Questions for Class VIII

The #Region Directive

This directive helps in collapsing and hiding sections of code in Visual Basic files.

Syntax for this directive is:

#Region "identifier_string"
#End Region

For example,

#Region "StatsFunctions"
' Insert code for the Statistical functions here.
#End Region

