- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Using divisibility tests, determine which of the following numbers are divisible by 11 :
(a) 5445
(b) 10824
(c) 7138965
(d) 70169308
(e) 10000001
(f) 901153
To do :
We have to find whether the given numbers are divisible by 11.
Solution :
Divisibility rule of 11:
A positive integer N is divisible by $11$ if the difference of the alternating sum of digits of N is a multiple of $11$.
(a) 5445
Sum of the digits at odd places $= 5 + 4$
$= 9$
Sum of the digits at even places $= 4 + 5$
$= 9$
Difference $= 9 - 9$
$= 0$
0 is a multiple of $11$. (Zero is a multiple of every integer)
Hence, 5445 is divisible by 11.
(b) 10824
Sum of the digits at odd places $= 4 + 8 + 1$
$= 13$
Sum of the digits at even places $= 2 + 0$
$= 2$
Difference $= 13 - 2$
$= 11$
11 is a multiple of $11$.
Hence, 10824 is divisible by 11.
(c) 7138965
Sum of the digits at odd places $= 5 + 9 + 3 + 7$
$= 24$
Sum of the digits at even places $= 6 + 8 + 1$
$= 15$
Difference $= 24 - 15$
$= 9$
9 is not a multiple of $11$.
Hence, 7138965 is not divisible by 11.
(d) 70169308
Sum of the digits at odd places $= 8 + 3 + 6 + 0$
$= 17$
Sum of the digits at even places $= 0 + 9 + 1 + 7$
$= 17$
Difference $= 17 - 17$
$= 0$
0 is a multiple of $11$.
Hence, 70169308 is divisible by 11.
(e) 10000001
Sum of the digits at odd places $= 1 + 0 + 0 + 0$
$= 1$
Sum of the digits at even places $= 0 + 0 + 0 + 1$
$= 1$
Difference $= 1 - 1$
$= 0$
0 is a multiple of $11$.
Hence, 10000001 is divisible by 11.
(f) 901153
Sum of the digits at odd places $= 3 + 1 + 0 $
$=4$
Sum of the digits at even places $= 5 + 1 + 9$
$= 15$
Difference $= 15 - 4$
$= 11$
11 is a multiple of $11$.
Hence, 901153 is divisible by 11.