The largest number which divides 70 and 125, leaving remainders 5 and 8, respectively, is
(A) 13
(B) 65
(C) 875
(D) 1750

AcademicMathematicsNCERTClass 10

Given: 

70 and 125

To find: 

Here we have to find the value of the greatest number which divides 70 and 125 leaving remainders 5 and 8 respectively.

Solution:

If the required number divide 70 and 125 leaving remainders 5 and 8 respectively, then this means that number will divide 65($=70-5$) and 117($=125 - 8$) completely.

Now, we just have to find the HCF of 65 and 117.

Finding HCF of 65 and 117 using Euclid's division lemma:

Using Euclid’s lemma to get: 

  • $117\ =\ 65\ \times\ 1\ +\ 52$
  • $65=52\times1+13$
  • $52=13\times4+0$

Therefore the HCF of 65 and 117 is the divisor at this stage, i.e., 13.

So, the greatest number which divides 70 and 125 leaving remainders 5 and 8 respectively is 13.

raja
Updated on 10-Oct-2022 13:27:06

Advertisements