
http://www.tutorialspoint.com/testng/testng_custom_logger.htm Copyright © tutorialspoint.com

TESTNG CUSTOM LOGGINGTESTNG CUSTOM LOGGING

We had earlier read about the different options that TestNG provides for logging and reporting.
Now, let's learn how to start using them. To start with, we will write a sample program in which we
will use the ITestListener interface for logging purposes.

Create Test Case Class
Create a java class, say, SampleTest.java in C:\ > TestNG_WORKSPACE.

import org.testng.Assert;
import org.testng.annotations.Test;

public class SampleTest {
 @Test
 public void testMethodOne(){
 Assert.assertTrue(true);
 }

 @Test
 public void testMethodTwo(){
 Assert.assertTrue(false);
 }

 @Test(dependsOnMethods={"testMethodTwo"})
 public void testMethodThree(){
 Assert.assertTrue(true);
 }
}

The preceding test class contains three test methods out of which testMethodOne and
testMethodThree will pass when executed, whereas testMethodTwo is made to fail by passing a
false Boolean value to the Assert.assertTrue method, which is used for truth conditions in the tests.

Create Custom Logging Class
Create another new class named CustomListener.java in C:\ > TestNG_WORKSPACE.

import org.testng.ITestResult;
import org.testng.TestListenerAdapter;

public class CustomListener extends TestListenerAdapter{
 private int m_count = 0;

 @Override
 public void onTestFailure(ITestResult tr) {
 log(tr.getName()+ "--Test method failed\n");
 }

 @Override
 public void onTestSkipped(ITestResult tr) {
 log(tr.getName()+ "--Test method skipped\n");
 }

 @Override
 public void onTestSuccess(ITestResult tr) {
 log(tr.getName()+ "--Test method success\n");
 }

 private void log(String string) {
 System.out.print(string);
 if (++m_count % 40 == 0) {
 System.out.println("");
 }

http://www.tutorialspoint.com/testng/testng_custom_logger.htm

 }

}

The above class extends TestListenerAdapter, which implements ITestListener with empty
methods. Hence, no need to override other methods from the interface. You can implement the
interface directly, if you prefer so.

Create testng.xml
Create testng.xml in C:\ > TestNG_WORKSPACE to execute test cases.

<?xml version="1.0" encoding="UTF-8"?>
<suite name="Simple Logger Suite">
 <listeners>
 <listener class-name="CustomListener" />
 </listeners>

 <test name="Simple Logger test">
 <classes>
 <class name="SampleTest" />
 </classes>
 </test>
</suite>

Compile the SampleTest, CustomListener classes using javac.

C:\TestNG_WORKSPACE>javac CustomListener.java SampleTest.java

Now, run the testng.xml.

C:\TestNG_WORKSPACE>java -cp "C:\TestNG_WORKSPACE" org.testng.TestNG testng.xml

Verify the output.

testMethodOne--Test method success
testMethodTwo--Test method failed
testMethodThree--Test method skipped

===
Simple Logger Suite
Total tests run: 3, Failures: 1, Skips: 1
===

We created a custom logger class, which implements the ITestListener interface and attached
itself to the TestNG test suite as a listener. Methods of this listener class are invoked by TestNG
when test started, at test fail, at test success, and so on. Multiple listeners can be implemented and
added to the test suite execution, TestNG will invoke all the listeners that are attached to the test
suite.

Logging listeners are mainly used when we need to see the continuous status of the test execution
when the tests are getting executed.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

