
http://www.tutorialspoint.com/swing/swing_jlist.htm Copyright © tutorialspoint.com

SWING - JLIST CLASSSWING - JLIST CLASS

Introduction
The class JList is a component which displays a list of objects and allows the user to select one or
more items. A separate model, ListModel, maintains the contents of the list.

Class declaration
Following is the declaration for javax.swing.JList class:

public class JList
 extends JComponent
 implements Scrollable, Accessible

Field
Following are the fields for javax.swing.JList class −

static int HORIZONTAL_WRAP − Indicates a "newspaper style" layout with cells flowing
horizontally then vertically.

static int VERTICAL − Indicates a vertical layout of cells, in a single column; the default
layout.

static int VERTICAL_WRAP − Indicates a "newspaper style" layout with cells flowing
vertically then horizontally.

Class constructors

S.N. Constructor & Description

1 JList

Constructs a JList with an empty, read-only, model.

2 JListListModeldataModel

Constructs a JList that displays elements from the specified, non-null, model.

3 JListObject[]listData

Constructs a JList that displays the elements in the specified array.

4 JListVector < ? > listData

Constructs a JList that displays the elements in the specified Vector.

Class methods

S.N. Method & Description

1 void addListSelectionListenerListSelectionListenerlistener

Adds a listener to the list, to be notified each time a change to the selection occurs; the

http://www.tutorialspoint.com/swing/swing_jlist.htm

preferred way of listening for selection state changes.

2 void addSelectionIntervalintanchor, intlead

Sets the selection to be the union of the specified interval with current selection.

3 void clearSelection

Clears the selection; after calling this method, isSelectionEmpty will return true.

4 protected ListSelectionModel createSelectionModel

Returns an instance of DefaultListSelectionModel; called during construction to initialize
the list's selection model property.

5 void ensureIndexIsVisibleintindex

Scrolls the list within an enclosing viewport to make the specified cell completely visible.

6 protected void fireSelectionValueChangedintfirstIndex, intlastIndex, booleanisAdjusting

Notifies ListSelectionListeners added directly to the list of selection changes made to the
selection model.

7 AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this JList.

8 int getAnchorSelectionIndex

Returns the anchor selection index.

9 Rectangle getCellBoundsintindex0, intindex1

Returns the bounding rectangle, in the list's coordinate system, for the range of cells
specified by the two indices.

10 ListCellRenderer getCellRenderer

Returns the object responsible for painting list items.

11 boolean getDragEnabled

Returns whether or not automatic drag handling is enabled.

12 JList.DropLocation getDropLocation

Returns the location that this component should visually indicate as the drop location
during a DnD operation over the component, or null if no location is to currently be
shown.

13 DropMode getDropMode

Returns the drop mode for this component.

14 int getFirstVisibleIndex

Returns the smallest list index that is currently visible.

15 int getFixedCellHeight

Returns the value of the fixedCellHeight property.

16 int getFixedCellWidth

Returns the value of the fixedCellWidth property.

17 int getLastVisibleIndex

Returns the largest list index that is currently visible.

18 int getLayoutOrientation

Returns the layout orientation property for the list: VERTICAL if the layout is a single
column of cells, VERTICAL_WRAP if the layout is "newspaper style" with the content
flowing vertically then horizontally, or HORIZONTAL_WRAP if the layout is "newspaper
style" with the content flowing horizontally then vertically.

19 int getLeadSelectionIndex

Returns the lead selection index.

20 ListSelectionListener[] getListSelectionListeners

Returns an array of all the ListSelectionListeners added to this JList by way of
addListSelectionListener.

21 int getMaxSelectionIndex

Returns the largest selected cell index, or -1 if the selection is empty.

22 int getMinSelectionIndex

Returns the smallest selected cell index, or -1 if the selection is empty.

23 ListModel getModel

Returns the data model that holds the list of items displayed by the JList component.

24 int getNextMatchStringprefix, intstartIndex, Position. Biasbias

Returns the next list element whose toString value starts with the given prefix.

25 Dimension getPreferredScrollableViewportSize

Computes the size of viewport needed to display visibleRowCount rows.

26 Object getPrototypeCellValue

Returns the "prototypical" cell value -- a value used to calculate a fixed width and height
for cells.

27 int getScrollableBlockIncrementRectanglevisibleRect, intorientation, intdirection

Returns the distance to scroll to expose the next or previous block.

28 boolean getScrollableTracksViewportHeight

Returns true if this JList is displayed in a JViewport and the viewport is taller than the list's
preferred height, or if the layout orientation is VERTICAL_WRAP and visibleRowCount <=
0; otherwise returns false.

29 boolean getScrollableTracksViewportWidth

Returns true if this JList is displayed in a JViewport and the viewport is wider than the list's
preferred width, or if the layout orientation is HORIZONTAL_WRAP and visibleRowCount
<= 0; otherwise returns false.

30 int getScrollableUnitIncrementRectanglevisibleRect, intorientation, intdirection

Returns the distance to scroll to expose the next or previous row forverticalscrolling or
column forhorizontalscrolling.

31 int getSelectedIndex

Returns the smallest selected cell index; the selection when only a single item is selected
in the list.

32 int[] getSelectedIndices

Returns an array of all of the selected indices, in increasing order.

33 Object getSelectedValue

Returns the value for the smallest selected cell index; the selected value when only a
single item is selected in the list.

34 Object[] getSelectedValues

Returns an array of all the selected values, in increasing order based on their indices in
the list.

35 Color getSelectionBackground

Returns the color used to draw the background of selected items.

36 Color getSelectionForeground

Returns the color used to draw the foreground of selected items.

37 int getSelectionMode

Returns the current selection mode for the list.

38 ListSelectionModel getSelectionModel

Returns the current selection model.

39 String getToolTipTextMouseEventevent

Returns the tooltip text to be used for the given event.

40 ListUI getUI

Returns the ListUI, the look and feel object that renders this component.

41 String getUIClassID

Returns "ListUI", the UIDefaults key used to look up the name of the javax.swing.plaf.ListUI
class that defines the look and feel for this component.

42 boolean getValueIsAdjusting

Returns the value of the selection model's isAdjusting property.

43 int getVisibleRowCount

Returns the value of the visibleRowCount property.

44 Point indexToLocationintindex

Returns the origin of the specified item in the list's coordinate system.

45 boolean isSelectedIndexintindex

Returns true if the specified index is selected, else false.

46 boolean isSelectionEmpty

Returns true if nothing is selected, else false.

47 int locationToIndexPointlocation

Returns the cell index closest to the given location in the list's coordinate system.

48 protected String paramString

Returns a String representation of this JList.

49 void removeListSelectionListenerListSelectionListenerlistener

Removes a selection listener from the list.

50 void removeSelectionIntervalintindex0, intindex1

Sets the selection to be the set difference of the specified interval and the current
selection.

51 void setCellRendererListCellRenderercellRenderer

Sets the delegate that is used to paint each cell in the list.

52 void setDragEnabledbooleanb

Turns on or off automatic drag handling.

53 void setDropModeDropModedropMode

Sets the drop mode for this component.

54 void setFixedCellHeightintheight

Sets a fixed value to be used for the height of every cell in the list.

55 void setFixedCellWidthintwidth

Sets a fixed value to be used for the width of every cell in the list.

56 void setLayoutOrientationintlayoutOrientation

Defines the way list cells are layed out.

57 void setListDataObject[]listData

Constructs a read-only ListModel from an array of objects, and calls setModel with this
model.

58 void setListDataVector < ? > listData

Constructs a read-only ListModel from a Vector and calls setModel with this model.

59 void setModelListModelmodel

Sets the model that represents the contents or "value" of the list, notifies property change
listeners, and then clears the list's selection.

60 void setPrototypeCellValueObjectprototypeCellValue

Sets the prototypeCellValue property, and then ifthenewvalueisnon − null, computes the
fixedCellWidth and fixedCellHeight properties by requesting the cell renderer component
for the given value andindex0 from the cell renderer, and using that component's preferred
size.

61 void setSelectedIndexintindex

Selects a single cell.

62 void setSelectedIndicesint[]indices

Changes the selection to be the set of indices specified by the given array.

63 void setSelectedValueObjectanObject, booleanshouldScroll

Selects the specified object from the list.

64 void setSelectionBackgroundColorselectionBackground

Sets the color used to draw the background of selected items, which cell renderers can
use fill selected cells.

65 void setSelectionForegroundColorselectionForeground

Sets the color used to draw the foreground of selected items, which cell renderers can
use to render text and graphics.

66 void setSelectionIntervalintanchor, intlead

Selects the specified interval.

67 void setSelectionModeintselectionMode

Sets the selection mode for the list.

68 void setSelectionModelListSelectionModelselectionModel

Sets the selectionModel for the list to a non-null ListSelectionModel implementation.

69 void setUIListUIui

Sets the ListUI, the look and feel object that renders this component.

70 void setValueIsAdjustingbooleanb

Sets the selection model's valueIsAdjusting property.

71 void setVisibleRowCountintvisibleRowCount

Sets the visibleRowCount property, which has different meanings depending on the
layout orientation: For a VERTICAL layout orientation, this sets the preferred number of
rows to display without requiring scrolling; for other orientations, it affects the wrapping
of cells.

72 void updateUI

Resets the ListUI property by setting it to the value provided by the current look and feel.

Methods inherited
This class inherits methods from the following classes:

javax.swing.JComponent

java.awt.Container

java.awt.Component

java.lang.Object

JList Example
Create the following java program using any editor of your choice in say D:/ > SWING > com >
tutorialspoint > gui >

SwingControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class SwingControlDemo {

 private JFrame mainFrame;
 private JLabel headerLabel;
 private JLabel statusLabel;

 private JPanel controlPanel;

 public SwingControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 SwingControlDemo swingControlDemo = new SwingControlDemo();
 swingControlDemo.showListDemo();
 }

 private void prepareGUI(){
 mainFrame = new JFrame("Java Swing Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new JLabel("", JLabel.CENTER);
 statusLabel = new JLabel("",JLabel.CENTER);

 statusLabel.setSize(350,100);

 controlPanel = new JPanel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showListDemo(){

 headerLabel.setText("Control in action: JList");

 final DefaultListModel fruitsName = new DefaultListModel();

 fruitsName.addElement("Apple");
 fruitsName.addElement("Grapes");
 fruitsName.addElement("Mango");
 fruitsName.addElement("Peer");

 final JList fruitList = new JList(fruitsName);
 fruitList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 fruitList.setSelectedIndex(0);
 fruitList.setVisibleRowCount(3);

 JScrollPane fruitListScrollPane = new JScrollPane(fruitList);

 final DefaultListModel vegName = new DefaultListModel();

 vegName.addElement("Lady Finger");
 vegName.addElement("Onion");
 vegName.addElement("Potato");
 vegName.addElement("Tomato");

 final JList vegList = new JList(vegName);
 vegList.setSelectionMode(
 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
 vegList.setSelectedIndex(0);
 vegList.setVisibleRowCount(3);

 JScrollPane vegListScrollPane = new JScrollPane(vegList);

 JButton showButton = new JButton("Show");

 showButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String data = "";
 if (fruitList.getSelectedIndex() != -1) {
 data = "Fruits Selected: " + fruitList.getSelectedValue();
 statusLabel.setText(data);
 }
 if(vegList.getSelectedIndex() != -1){
 data += " Vegetables selected: ";
 for(Object vegetable:vegList.getSelectedValues()){
 data += vegetable + " ";
 }
 }
 statusLabel.setText(data);
 }
 });

 controlPanel.add(fruitListScrollPane);
 controlPanel.add(vegListScrollPane);
 controlPanel.add(showButton);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > SWING and type the following
command.

D:\SWING>javac com\tutorialspoint\gui\SwingControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\SWING>java com.tutorialspoint.gui.SwingControlDemo

Verify the following output

Processing math: 100%

