
http://www.tutorialspoint.com/swift/swift_functions.htm Copyright © tutorialspoint.com

SWIFT - FUNCTIONSSWIFT - FUNCTIONS

A function is a set of statements organized together to perform a specific task. Swift function
resembles from simple C function to complex Objective C language function. It allows us to pass
local and global parameter values inside the function calls. As like any other languages swift
function follows the same procedure.

Function Declaration: It tells the compiler about a function's name, return type, and
parameters.

Function Definition: It provides the actual body of the function.

Swift functions contain parameter type and its return types.

Function Definition
In Swift language Function is defined by the "func" keyword. When a function is newly defined it
may take one or several values as input 'parameters' to the function and it will process the
functions in the main body and pass back the values to the functions as output 'return types'.

Every function has a function name, which describes the task that the function performs. To use a
function, you "call" that function with its name and pass it input values knownasarguments that match
the types of the function's parameters. Function parameters is also called as 'tuples'.

A function's arguments must always be provided in the same order as the function's parameter list
and the return values are followed by ->.

Syntax

Syntax:
func funcname(Parameters) -> returntype
{
 Statement1
 Statement2

 Statement N
 return parameters
}

The students name is declared as string datatype declared inside the function 'student' and when
the function is called it will return students name.

func student(name: String) -> String {
 return name
}
println(student("First Program"))
println(student("About Functions"))

When we run above program using playground, we get following result

First Program
About Functions

Calling a Function
Consider for example to display the numbers a function with function name 'display' is initialized
first with argument 'no1' which holds integer data type. Then the argument 'no1' is assigned to
argument 'a' which hereafter will point to the same data type integer. Now the argument 'a' is
returned to the function. Here display function will hold the integer value and return the integer
values when each and every time the function is invoked.

http://www.tutorialspoint.com/swift/swift_functions.htm

func display(no1: Int) -> Int {
 let a = no1
 return a
}

println(display(100))
println(display(200))

When we run above program using playground, we get following result

100
200

Parameters and Return Values
Swift provides flexible function parameters and its return values from simple to complex values.
Similar to that of C and Objective C functions may also take several forms

Functions with Parameters
Function is accessed by passing its parameter values to the body of the function.we can pass
single to multiple parmeter values as tuples inside the function.

func mult(no1: Int, no2: Int) -> Int {
 return no1*no2
}
println(mult(2,20))
println(mult(3,15))
println(mult(4,30))

When we run above program using playground, we get following result

40
45
120

Functions without Parameters
We may also have functions without any parameters.

Syntax

func funcname() -> datatype {
 return datatype
}

Following is an example having a function without a parameter:

func votersname() -> String {
 return "Alice"
}
println(votersname())

When we run above program using playground, we get following result

Alice

Functions With Return Values
Functions are also used to return string, integer and float data type values as return types. To find
out the largest and smallest number in a given array function 'ls' is declared with large and small
integer datatypes.

An array is initialized to hold integer values. Then the array is processed and each and every value
in the array is read and compared for its previous value. When the value is lesser than the
previous one it is stored in 'small' argument otherwise it is stored in 'large' argument and the
values are returned by calling the function

func ls(array: [Int]) -> (large: Int, small: Int) {
 var lar = array[0]
 var sma = array[0]
 for i in array[1..<array.count] {
 if i < sma {
 sma = i
 } else if i > lar {
 lar = i
 }
 }
 return (lar, sma)
}
let num = ls([40,12,-5,78,98])
println("Largest number is: \(num.large) and smallest number is: \(num.small)")

When we run above program using playground, we get following result

Largest number is: 98 and smallest number is: -5

Functions Without Return Values
Some functions may have arguments declared inside the function with out any return values. The
following program declares a and b as arguments to the sum function. inside the function itself the
values for arguments a and b are passed by invoking the function call sum and its values are
printed thereby eliminating return values.

func sum(a: Int, b: Int) {
 let a = a + b
 let b = a - b
 println(a, b)
}
sum(20, 10)
sum(40,10)
sum(24,6)

When we run above program using playground, we get following result

(30, 20)
(50, 40)
(30, 24)

Functions with Optional Return Types
Swift introduces 'optional' feature to get rid of problems by introducing a safety measure. Consider
for example we are declaring function values return type as integer but what will happen when the
function returns a string value or either a nil value. In that case compiler will return an error value.
'optional' are introduced to get rid of these problems.

Optional functions will take two forms 'value' and a 'nil'. We will mention 'Optionals' with the key
reserved character '?' to check whether the tuple is returning a value or a nil value.

func minMax(array: [Int]) -> (min: Int, max: Int)? {
 if array.isEmpty { return nil }
 var currentMin = array[0]
 var currentMax = array[0]
 for value in array[1..<array.count] {
 if value < currentMin {
 currentMin = value
 } else if value > currentMax {
 currentMax = value

 }
 }
 return (currentMin, currentMax)
}
if let bounds = minMax([8, -6, 2, 109, 3, 71]) {
 println("min is \(bounds.min) and max is \(bounds.max)")
}

When we run above program using playground, we get following result

min is -6 and max is 109

'Optionals' are used to check 'nil' or garbage values thereby consuming lot of time in debugging
and make the code efficient and readable for the user.

Functions Local Vs External Parameter Names

Local Parameter Names
Local parameter names are accessed inside the function alone.

func sample(number: Int) {
 println(number)
}

Here the func sample argument number is declared as internal variable since it is accessed
internally by the function sample. Here the 'number' is declared as local variable but the reference
to the variable is made outside the function with the following statement

func sample(number: Int) {
 println(number)
}
sample(1)
sample(2)
sample(3)

When we run above program using playground, we get following result

1
2
3

External Parameter Names
External parameter names allow us to name a function parameters to make their purpose more
clear. For example below you can name two function parameters and then call that function as
follows

func pow(firstArg a: Int, secondArg b: Int) -> Int {
 var res = a
 for _ in 1..<b {
 res = res * a
 }
 println(res)
 return res
}
pow(firstArg:5, secondArg:3)

When we run above program using playground, we get following result

125

Variadic Parameters

When we want to define function with multiple number of arguments, then we can declare the
members as 'variadic' parameters. Parameters can be specified as variadic by · · · after the
parameter name.

func vari<N>(members: N...){
 for i in members {
 println(i)
 }
}
vari(4,3,5)
vari(4.5, 3.1, 5.6)
vari("Swift", "Enumerations", "Closures")

When we run above program using playground, we get following result

4
3
5
4.5
3.1
5.6
Swift
Enumerations
Closures

Constant, Variable and I/O parameters
Functions by default consider the parameters as 'constant' where as the user can declare the
arguments to the functions as variables also. We already discussed that 'let' keyword is used to
declare constant parameters and variable parameters is defined with 'var' keyword.

I/O parameters in Swift provide functionality to retain the parameter values even though its values
are modified after the function call. At the beginning of function parameter definition 'inout'
keyword is declared to retain the member values.

It derives the keyword 'inout' since its values are passed 'in' to the function and its values are
accessed and modified by its function body and it is returned back 'out' of the function to modify
the original argument.

Variables are only passed as an argument for in-out parameter since its values alone are modified
inside and outside the function. Hence no need to declare strings and literals as in-out parameters.
'&' before a variable name refers that we are passing the argument to the in-out parameter.

func temp(inout a1: Int, inout b1: Int) {
 let t = a1
 a1 = b1
 b1 = t
}
var no = 2
var co = 10
temp(&no, &co)
println("Swapped values are \(no), \(co)")

When we run above program using playground, we get following result

Swapped values are 10, 2

Function Types & its Usage
Each and every function follows the specific function by considering the input parameters and
outputs the desired result.

func inputs(no1: Int, no2: Int) -> Int {
 return no1/no2

}

Following is an example:

func inputs(no1: Int, no2: Int) -> Int {
 return no1/no2
}
println(inputs(20,10))
println(inputs(36,6))

When we run above program using playground, we get following result

2
6

Here the function is initialized with two arguments no1 and no2 as integer data types and its return
type is also declared as 'int'

Func inputstr(name: String) -> String {
 return name
}

Here the function is declared as string datatype.

Function may also have void data types to mention that the function won't return anything.

func inputstr() {
 println("Swift Functions")
 println("Types and its Usage")
}
inputstr()

When we run above program using playground, we get following result

Swift Functions
Types and its Usage

The above function is declared as a void function with no arguments and no return values.

Using Function Types
Functions are first passed with integer, float or string type arguments and then it is passed as
constants or variables to the function as mentioned below.

var addition: (Int, Int) -> Int = sum

Here sum is a function name having 'a' and 'b' integer variables which is now declared as a
variable to the function name addition. Hereafter both addition and sum function both have same
number of arguments declared as integer datatype and also return integer values as references.

func sum(a: Int, b: Int) -> Int {
 return a + b
}
var addition: (Int, Int) -> Int = sum
println("Result: \(addition(40, 89))")

When we run above program using playground, we get following result

Result: 129

Function Types as Parameter Types & Return Types

We can also pass the function itself as parameter types to another function.

func sum(a: Int, b: Int) -> Int {
 return a + b
}
var addition: (Int, Int) -> Int = sum
println("Result: \(addition(40, 89))")
func another(addition: (Int, Int) -> Int, a: Int, b: Int) {
 println("Result: \(addition(a, b))")
}
another(sum, 10, 20)

When we run above program using playground, we get following result

Result: 129
Result: 30

Nested Functions
Nested function provides the facility to call the outer function by invoking the inside function.

func calcDecrement(forDecrement total: Int) -> () -> Int {
 var overallDecrement = 0
 func decrementer() -> Int {
 overallDecrement -= total
 return overallDecrement
 }
 return decrementer
}
let decrem = calcDecrement(forDecrement: 30)
println(decrem())

When we run above program using playground, we get following result

-30
Loading [MathJax]/jax/output/HTML-CSS/jax.js

