What is SVG?

- SVG, Scalable Vector Graphics is an XML based language to define vector based graphics.
- SVG is intended to display images over the web.
- Being vector images, SVG image never loses quality no matter how they are zoomed out or resized.
- SVG images supports interactivity and animation.
- SVG is a W3C standard.
- Others image formats like raster images can also be clubbed with SVG images.
- SVG integrates well with XSLT and DOM of HTML.

Advantages

- Use any text editor to create and edit SVG images.
- Being XML based, SVG images are searchable, indexable and can be scripted and compressed.
- SVG images are highly scalable as they never loses quality no matter how they are zoomed out or resized
- Good printing quality at any resolution
- SVG is an Open Standard

Disadvantages

- Being text format size is larger then compared to binary formatted raster images.
- Size can be big even for small image.

Example

Following XML snippet can be used to draw a circle in web browser.

```xml
<svg width="100" height="100">
  <circle cx="50" cy="50" r="40" stroke="red" stroke-width="2" fill="green" />
</svg>
```

Embed the SVG XML directly in an HTML page.

testSVG.htm

```html
<html>
  <title>SVG Image</title>
  <body>
    
    <h1>Sample SVG Image</h1>

    <svg width="100" height="100">
      <circle cx="50" cy="50" r="40" stroke="red" stroke-width="2" fill="green" />
    </svg>

  </body>
</html>
```
Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. In Internet Explorer, activeX controls are required to view SVG images.

How SVG integrates with HTML

- `<svg>` element indicates the start of SVG image.
- `<svg>` element's width and height attributes defines the height and width of the SVG image.
- In above example, we've used a `<circle>` element to draw a circle.
- cx and cy attribute represents center of the circle. Default value is 0, 0. r attribute represents radius of circle.
- Other attributes stroke and stroke-width controls the outlining of the circle.
- fill attribute defines the fill color of the circle.
- Closing</svg> tag indicates the end of SVG image.

SVG - SHAPES

SVG provides number of shapes which can be used to draw images. Following are the common shapes.

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Shape Type & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>rect</code></td>
</tr>
<tr>
<td></td>
<td>Used to draw a rectangle.</td>
</tr>
<tr>
<td>2</td>
<td><code>circle</code></td>
</tr>
<tr>
<td></td>
<td>Used to draw a circle.</td>
</tr>
<tr>
<td>3</td>
<td><code>ellipse</code></td>
</tr>
<tr>
<td></td>
<td>Used to draw a ellipse.</td>
</tr>
<tr>
<td>4</td>
<td><code>line</code></td>
</tr>
<tr>
<td></td>
<td>Used to draw a line.</td>
</tr>
<tr>
<td>5</td>
<td><code>polygon</code></td>
</tr>
<tr>
<td></td>
<td>Used to draw a closed shape consisting of connected straight lines.</td>
</tr>
</tbody>
</table>
6 polyline
Used to draw a open shape consisting of connected straight lines.

7 path
Used to draw any path.

SVG - TEXT

<text> element is used to draw text.

Declaration
Following is the syntax declaration of <text> element. We've shown main attributes only.

```
<text
  x="x-coordinates"
  y="y-coordinates"
  dx="list of lengths"
  dy="list of lengths"
  rotate="list of numbers"
  textlength="length"
  lengthAdjust="spacing" >
</text>
```

Attributes

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Attribute & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x – x axis coordinates of glyphs.</td>
</tr>
<tr>
<td>2</td>
<td>y – y axis coordinates of glyphs.</td>
</tr>
<tr>
<td>3</td>
<td>dx – shift along with x-axis.</td>
</tr>
<tr>
<td>4</td>
<td>dy – shift along with y-axis.</td>
</tr>
<tr>
<td>5</td>
<td>rotate – rotation applied to all glyphs.</td>
</tr>
<tr>
<td>6</td>
<td>textlength – rendering length of the text.</td>
</tr>
<tr>
<td>7</td>
<td>lengthAdjust – type of adjustment with the rendered length of the text.</td>
</tr>
</tbody>
</table>

Example
testSVG.htm

```
<html>
  <title>SVG Text</title>
  <body>
    <h1>Sample SVG Text</h1>
    <svg width="800" height="800">
      <g>
        <text x="30" y="12" >Text: </text>
        <text x="30" y="30" fill="rgb(121,0,121)">WWW.TutorialsPoint.COM</text>
      </g>
    </svg>
  </body>
</html>
```
Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

Multiline Text

<html>
 <title>SVG Text</title>
 <body>
 <h1>Sample SVG Text</h1>
 <svg width="570" height="100">
 <g>
 <text x="30" y="12">Multiline Text: </text>
 <text x="30" y="30" fill="rgb(121,0,121)">WWW.TutorialsPoint.COM</text>
 <tspan x="30" y="50" font-weight="bold">Simply Easy learning.</tspan>
 <tspan x="30" y="70">We teach just for free.</tspan>
 </g>
 </svg>
 </body>
</html>
Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

Hyper link Text

```html
<html>
  <title>SVG Text</title>
  <body>
    <h1>Sample SVG Text</h1>
    <svg width="800" height="800">
      <g>
        <text x="30" y="10" >Text as Link: </text>
        <a xlink:href="http://www.tutorialspoint.com/svg/" target="_blank">
          <text font-family="Verdana" font-size="20" x="30" y="30" fill="rgb(121,0,121)">WWW.TutorialsPoint.COM</text>
        </a>
      </g>
    </svg>
  </body>
</html>
```

Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

SVG - STROKE

SVG supports multiple stroke properties.
Following are the main stroke properties used.

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Stroke Type & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>stroke – defines color of text, line or outline of any element.</td>
</tr>
<tr>
<td>2</td>
<td>stroke-width – defines thickness of text, line or outline of any element.</td>
</tr>
<tr>
<td>3</td>
<td>stroke-linecap – defines different types of ending of a line or outline of any path.</td>
</tr>
<tr>
<td>4</td>
<td>stroke-dasharray – used to create dashed lines.</td>
</tr>
</tbody>
</table>

Example

testSVG.htm

```html
<html>
  <title>SVG Stroke</title>
  <body>
    <h1>Sample SVG Stroke</h1>
    <svg width="800" height="800">
      <g>
        <text x="30" y="30" >Using stroke: </text>
        <path stroke="red" d="M 50 50 L 300 50" />
        <path stroke="green" d="M 50 70 L 300 70" />
        <path stroke="blue" d="M 50 90 L 300 90" />
      </g>
    </svg>
  </body>
</html>
```

Output

Open testSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

Stroke width

```html
<html>
  <title>SVG Stroke</title>
  <body>
    <h1>Sample SVG Stroke</h1>
    <svg width="800" height="800">
      <text x="30" y="10" >Using stroke-width: </text>
      <path stroke-width="2" stroke="black" d="M 50 50 L 300 50" />
      <path stroke-width="4" stroke="black" d="M 50 70 L 300 70" />
      <path stroke-width="6" stroke="black" d="M 50 90 L 300 90" />
    </svg>
  </body>
</html>
```
stroke-linecap

```
<html>
  <title>SVG Stroke</title>
  <body>
    <h1>Sample SVG Stroke</h1>
    <svg width="800" height="800">
      <g>
        <text x="30" y="30">Using stroke-linecap: </text>
        <path stroke-linecap="butt" stroke-width="6" d="M 50 50 L 300 50" />
        <path stroke-linecap="round" stroke-width="6" d="M 50 70 L 300 70" />
        <path stroke-linecap="square" stroke-width="6" d="M 50 90 L 300 90" />
      </g>
    </svg>
  </body>
</html>
```

Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

stroke-dasharray

```
<html>
  <title>SVG Stroke</title>
  <body>
    <svg width="800" height="800">
      <g>
        <text x="30" y="30">Using stroke-dasharray: </text>
        <path d="M 50 50 L 300 50" stroke-linecap="butt" stroke-linejoin="miter" stroke-width="6" stroke-dasharray="5 5" />
        <path d="M 50 70 L 300 70" stroke-linecap="round" stroke-linejoin="miter" stroke-width="6" stroke-dasharray="5 5" />
        <path d="M 50 90 L 300 90" stroke-linecap="square" stroke-linejoin="miter" stroke-width="6" stroke-dasharray="5 5" />
      </g>
    </svg>
  </body>
</html>
```

Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.
<h1>Sample SVG Stroke</h1>

```html
<svg width="800" height="800">
  <g>
    <text x="30" y="30">Using stroke-dasharray: </text>
    <path stroke-dasharray="5,5" stroke-width="6" stroke="black" d="M 50 50 L 300 50" />
    <path stroke-dasharray="10,10" stroke-width="6" stroke="black" d="M 50 70 L 300 70" />
    <path stroke-dasharray="20,10,5,5,5,10" stroke-width="6" stroke="black" d="M 50 90 L 300 90" />
  </g>
</svg>
```

Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

SVG - FILTERS

SVG uses `<filter>` element to define filters. `<filter>` element uses an id attribute to uniquely identify it. Filters are defined within `<def>` elements and then are referenced by graphics elements by their ids.

SVG provides a rich set of filters. Following is the list of the commonly used filters.

- `feBlend`
- `feColorMatrix`
- `feComponentTransfer`
- `feComposite`
- `feConvolveMatrix`
- `feDiffuseLighting`
- `feDisplacementMap`
- `feFlood`
- `feGaussianBlur`
- `feImage`
- `feMerge`
- `feMorphology`
- `feOffset` - filter for drop shadows
Declaration

Following is the syntax declaration of `<filter>` element. We've shown main attributes only.

```xml
<filter
    filterUnits="units to define filter effect region"
    primitiveUnits="units to define primitive filter subregion"
    x="x-axis co-ordinate"
    y="y-axis co-ordinate"
    width="length"
    height="length"
    filterRes="numbers for filter region"
    xlink:href="reference to another filter" />
</filter>
```

Attributes

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Name & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>filterUnits – units to define filter effect region. It specifies the coordinate system for the various length values within the filter and for the attributes defining the filter subregion. If filterUnits="userSpaceOnUse", values represent values in the current user coordinate system in place at the time when the 'filter' element is used. If filterUnits="objectBoundingBox", values represent values in fractions or percentages of the bounding box on the referencing element in place at the time when the 'filter' element is used. Default is userSpaceOnUse.</td>
</tr>
<tr>
<td>2</td>
<td>primitiveUnits – units to define filter effect region. It specifies the coordinate system for the various length values within the filter and for the attributes defining the filter subregion. If filterUnits="userSpaceOnUse", values represent values in the current user coordinate system in place at the time when the 'filter' element is used. If filterUnits="objectBoundingBox", values represent values in fractions or percentages of the bounding box on the referencing element in place at the time when the 'filter' element is used. Default is userSpaceOnUse.</td>
</tr>
<tr>
<td>3</td>
<td>x – x-axis co-ordinate of the filter bounding box. Default is 0.</td>
</tr>
<tr>
<td>4</td>
<td>y – y-axis co-ordinate of the filter bounding box. Default is 0.</td>
</tr>
<tr>
<td>5</td>
<td>width – width of the filter bounding box. Default is 0.</td>
</tr>
<tr>
<td>6</td>
<td>height – height of the filter bounding box. Default is 0.</td>
</tr>
<tr>
<td>7</td>
<td>filterRes – numbers representing filter regions.</td>
</tr>
<tr>
<td>8</td>
<td>xlink:href – used to refer to another filter.</td>
</tr>
</tbody>
</table>

Example

testSVG.htm
Two <filter> elements defined as filter1 and filter2.

- feGaussianBlur filter effect defines the blur effect with the amount of blur using stdDeviation.
- in="SourceGraphic" defines that the effect is applicable for the entire element.
- feOffset filter effect is used to create shadow effect. in="SourceAlpha" defines that the effect is applicable for the alpha part of RGBA graphics.
- <rect> elements linked the filters using filter attribute.

Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.
<defs>
 <filter>
 <feGaussianBlur in="SourceGraphic" stdDeviation="8" />
 </filter>
 <filter>
 <feOffset result="offOut" in="SourceAlpha" dx="20" dy="20" />
 <feGaussianBlur result="blurOut" in="offOut" stdDeviation="10" />
 <feBlend in="SourceGraphic" in2="blurOut" mode="normal" />
 </filter>
</defs>

<g>
 <text x="30" y="50">Using Filters (Shadow Effect): </text>
 <rect x="100" y="100" width="90" height="90" stroke="green" stroke-width="3" fill="green" filter="url(#filter2)" />
</g>
</svg>

Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

SVG - PATTERNS

SVG uses <pattern> element to define patterns. Patterns are defined using <pattern> element and are used to fill graphics elements in tiled fashion.

Declaration

Following is the syntax declaration of <pattern> element. We've shown main attributes only.

```
<pattern
  patternUnits="units to define x,y, width and height attributes."
  patternContentUnits ="units to define co-ordinate system of contents of pattern"
  patternTransform = "definition of an additional transformation from the pattern coordinate system onto the target coordinate system"
  x="x-axis co-ordinate"
  y="y-axis co-ordinate"
  width="length"
  height="length"
  preserveAspectRatio="to preserve width/height ratio of original content"
  xlink:href="reference to another pattern" >
</pattern>
```

Attributes
<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Name & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>patternUnits — units to define patterns effect region. It specifies the coordinate system for the various length values within the pattern and for the attributes defining the pattern subregion. If patternUnits="userSpaceOnUse", values represent values in the current user coordinate system in place at the time when the 'pattern' element is used. If patternUnits="objectBoundingBox", values represent values in fractions or percentages of the bounding box on the referencing element in place at the time when the 'pattern' element is used. Default is userSpaceOnUse.</td>
</tr>
<tr>
<td>2</td>
<td>patternContentUnits — units to define pattern content region. It specifies the coordinate system for the various length values within the pattern and for the attributes defining the pattern subregion. If patternContentUnits="userSpaceOnUse", values represent values in the current user coordinate system in place at the time when the 'pattern' element is used. If patternContentUnits="objectBoundingBox", values represent values in fractions or percentages of the bounding box on the referencing element in place at the time when the 'pattern' element is used. Default is userSpaceOnUse.</td>
</tr>
<tr>
<td>3</td>
<td>x — x-axis co-ordinate of the pattern bounding box. Default is 0.</td>
</tr>
<tr>
<td>4</td>
<td>y — y-axis co-ordinate of the pattern bounding box. Default is 0.</td>
</tr>
<tr>
<td>5</td>
<td>width — width of the pattern bounding box. Default is 0.</td>
</tr>
<tr>
<td>6</td>
<td>height — height of the pattern bounding box. Default is 0.</td>
</tr>
<tr>
<td>7</td>
<td>preserveAspectRatio — to preserve width/height ratio of original content.</td>
</tr>
<tr>
<td>8</td>
<td>xlink:href — used to refer to another pattern.</td>
</tr>
</tbody>
</table>

Example

testSVG.htm

```html
<html>
<title>SVG Pattern</title>
<body>
<h1>Sample SVG Pattern</h1>
<svg width="800" height="800">
  <defs>
    <pattern x="0" y="0" width="100" height="100"
      viewBox="0 0 4 4">
      <path d="M 0 0 L 3 0 L 1.5 3 z" fill="blue" stroke="green" />
    </pattern>
  </defs>

  <g>
    <text x="30" y="50">Using Pattern (Triangles): </text>
    <rect x="100" y="100" width="300" height="300" stroke="green"
      stroke-width="3" fill="url(#pattern1)" />
  </g>
</svg>
</body>
</html>
```

- One `<pattern>` element defined as pattern1.
- In pattern, a viewbox is defined and a path which is to be used as pattern is defined.
in rect element, in fill attribute, url of the pattern is specified to fill the rectangle with pattern created earlier.

Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

SVG - GRADIENTS

Gradient refers to smooth transition of one color to another color within a shape. SVG provides two types of gradients.

- **Linear Gradients** – Represents linear transition of one color to another from one direction to another.
- **Radial Gradients** – Represents circular transition of one color to another from one direction to another.

Linear Gradients

Declaration

Following is the syntax declaration of `<linearGradient>` element. We've shown main attributes only.

```xml
<linearGradient
    gradientUnits = "units to define co-ordinate system of contents of gradient"
    gradientTransform = "definition of an additional transformation from the gradient co-ordinate system onto the target co-ordinate system"
    x1="x-axis co-ordinate"
    y1="y-axis co-ordinate"
    x2="x-axis co-ordinate"
    y2="y-axis co-ordinate"
    spreadMethod="indicates method of spreading the gradient within graphics element"
    xlink:href="reference to another gradient" >
</linearGradient>
```

Attributes

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Name & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gradientUnits – units to define the coordinate system for the various length values within the gradient. If gradientUnits="userSpaceOnUse", values represent values in the current user coordinate system in place at the time when the gradient element is used. If patternContentUnits="objectBoundingBox", values represent values in fractions or percentages of the bounding box on the referencing element in place at the time when the gradient element is used. Default is userSpaceOnUse.</td>
</tr>
<tr>
<td>2</td>
<td>x1 – x-axis co-ordinate of the gradient vector. Default is 0.</td>
</tr>
<tr>
<td>3</td>
<td>y1 – y-axis co-ordinate of the gradient vector. Default is 0.</td>
</tr>
</tbody>
</table>
4 \(x_2 \) – x-axis co-ordinate of the gradient vector. Default is 0.

5 \(y_2 \) – y-axis co-ordinate of the gradient vector. Default is 0.

6 \textbf{spreadMethod} – indicates method of spreading the gradient within graphics element. Default is 'pad'.

7 \textbf{xlink:href} – used to refer to another gradient.

Example

testSVG.htm

```
<html>
  <title>SVG Linear Gradient</title>
  <body>
    <h1>Sample SVG Linear Gradient</h1>
    <svg width="600" height="600">
      <defs>
        <linearGradient>
          <stop offset="0%" stop-color="#FF0000"/>
          <stop offset="100%" stop-color="#00FFFF"/>
        </linearGradient>
      </defs>
      <g>
        <text x="30" y="50">Using Linear Gradient: </text>
        <rect x="100" y="100" width="200" height="200" stroke="green" stroke-width="3" fill="url(#sampleGradient)"/>
      </g>
    </svg>
  </body>
</html>
```

- One \texttt{<linearGradient>} element defined as \texttt{sampleGradient}.
- In \texttt{linearGradient}, two offsets are defined with two colors.
- in \texttt{rect} element, in \texttt{fill} attribute, \texttt{url} of the gradient is specified to fill the rectangle with gradient created earlier.

Output

Open \texttt{testSVG.htm} in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

Radial Gradients
Declaration

Following is the syntax declaration of `<radialGradient>` element. We've shown main attributes only.

```xml
<radialGradient
    gradientUnits="units to define co-ordinate system of contents of gradient"
    gradientTransform = "definition of an additional transformation from the gradient coordinate system onto the target coordinate system"
    cx="x-axis co-ordinate of center of circle."
    cy="y-axis co-ordinate of center of circle."
    r="radius of circle"
    fx="focal point for the radial gradient"
    fy="focal point for the radial gradient"
    spreadMethod="indicates method of spreading the gradient within graphics element"
    xlink:href="reference to another gradient" />
</radialGradient>
```

Attributes

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Name & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>gradientUnits</code> – units to define the coordinate system for the various length values within the gradient. If <code>gradientUnits="userSpaceOnUse"</code>, values represent values in the current user coordinate system in place at the time when the gradient element is used. If <code>patternContentUnits="objectBoundingBox"</code>, values represent values in fractions or percentages of the bounding box on the referencing element in place at the time when the gradient element is used. Default is <code>userSpaceOnUse</code>.</td>
</tr>
<tr>
<td>2</td>
<td><code>cx</code> – x-axis co-ordinate of the center of largest circle of gradient vector. Default is 0.</td>
</tr>
<tr>
<td>3</td>
<td><code>cy</code> – y-axis co-ordinate of the center of largest circle of gradient vector. Default is 0.</td>
</tr>
<tr>
<td>4</td>
<td><code>r</code> – radius of the center of largest circle of gradient vector. Default is 0.</td>
</tr>
<tr>
<td>5</td>
<td><code>fx</code> – focal point of radial gradient. Default is 0.</td>
</tr>
<tr>
<td>6</td>
<td><code>fy</code> – focal point of radial gradient. Default is 0.</td>
</tr>
<tr>
<td>7</td>
<td><code>spreadMethod</code> – indicates method of spreading the gradient within graphics element. Default is 'pad'.</td>
</tr>
<tr>
<td>8</td>
<td><code>xlink:href</code> – used to refer to another gradient.</td>
</tr>
</tbody>
</table>

Example

testSVG.htm
```html
<html>
  <title>SVG Radial Gradient</title>
  <body>
    <h1>Sample SVG Radial Gradient</h1>
    <svg width="600" height="600">
      <defs>
        <radialGradient>
          <stop offset="0%" stop-color="#FF0000" />
          <stop offset="100%" stop-color="#00FFF00" />
        </radialGradient>
      </defs>
    </svg>
  </body>
</html>
```
One `<radialGradient>` element defined as `sampleGradient`.

- In `radialGradient`, two offsets are defined with two colors.
- In `rect` element, in `fill` attribute, url of the gradient is specified to fill the rectangle with gradient created earlier.

Output

Open `textSVG.htm` in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering.

Example

`testSVG.htm`

```html
<html>
<title>SVG Interactivity</title>
<body>
  <h1>Sample Interactivity</h1>
  
  <svg width="600" height="600">
    <script type="text/JavaScript">
      <![CDATA[
      function showColor() {
        alert("Color of the Rectangle is: "+document.getElementById("rect1").getAttributeNS(null,"fill"));
      }

      function showArea(event){
        var width = parseFloat(event.target.getAttributeNS(null,"width"));
        var height = parseFloat(event.target.getAttributeNS(null,"height"));
        alert("Area of the rectangle is: "+width +"x"+ height);
      }

      function showRootChildrenCount() {
        alert("Total Children: "+document.documentElement.childNodes.length);
      }
    ]]>}
  </script>
</svg>
```
Explaination

- SVG supports JavaScript/ECMAScript functions. Script block is to be in CDATA block consider character data support in XML.
- SVG elements support mouse events, keyboard events. We've used onClick event to call a javascript functions.
- In javascript functions, document represents SVG document and can be used to get the SVG elements.
- In javascript functions, event represents current event and can be used to get the target element on which event got raised.

Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering. Click on each text and rectangle to see the result.

SVG - LINKING

<a > element is used to create hyperlink. "xlink:href" attribute is used to pass the IRI InternationalizedResourceIdentifiers which is complementary to URI UniformResourceIdentifiers.

Declaration

Following is the syntax declaration of <a> element. We've shown main attributes only.

```html
<a 
  xlink:show = "new" | "replace"
  xlink:actuate = "onRequest"
  xlink:href = "<IRI>">
  target = "_replace" | "_self" | "_parent" | "_top" | "_blank" | "<XML-Name>" >
</a>
```

Attributes
<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Name & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>xlink:show – for documentation purpose for XLink aware processors. Default is new.</td>
</tr>
<tr>
<td>2</td>
<td>xlink:actuate – for documentation purpose for XLink aware processors.</td>
</tr>
<tr>
<td>3</td>
<td>xlink:href – location of the referenced object.</td>
</tr>
<tr>
<td>4</td>
<td>target – used when targets for the ending resource are possible.</td>
</tr>
</tbody>
</table>

Example

testSVG.htm

```html
<html>
  <title>SVG Linking</title>
  <body>
    <h1>Sample Link</h1>
    <svg width="800" height="800">
      <g>
        <a xlink:href="http://www.tutorialspoint.com">
          <text x="0" y="15" fill="black" >
            Click me to load TutorialsPoint DOT COM.</text>
        </a>
      </g>

      <g>
        <text x="0" y="65" fill="black" >
          Click in the rectangle to load TutorialsPoint DOT COM</text>
        <a xlink:href="http://www.tutorialspoint.com">
          <rect x="100" y="80" width="300" height="100"
            style="fill:rgb(121,0,121);stroke-width:3;stroke:rgb(0,0,0)" />
        </a>
      </g>
    </svg>
  </body>
</html>
```

Output

Open textSVG.htm in Chrome web browser. You can use Chrome/Firefox/Opera to view SVG image directly without any plugin. Internet Explorer 9 and higher also supports SVG image rendering. Click on link and rectangle to see the result.