Study the diagram. The line $ l $ is perpendicular to line $ m $(a) $ \mathrm{Is} \mathrm{CE}=\mathrm{EG} $ ?(b) Does PE bisect CG?(c) Identify any two line segments for which PE is the perpendicular bisector.(d) Are these true?(i) $ \mathrm{AC}>\mathrm{FG} $(ii) $ \mathrm{CD}=\mathrm{GH} $(iii) $ \mathrm{BC}"
To do:
We have to study the diagram and answer the given questions.
Solution:
The line \( l \) is perpendicular to line \( m \).
From the figure,
(a) $CE = 2$ units and $EG = 2$ units
This implies,
$\mathrm{CE}=\mathrm{EG}$
(b) $CE = 2$ units, $EG = 2$ units
This implies,
PE bisects CG.
(c) $DE=EF=1$ unit and $PE$ is perpendicular to $DF$
$CE=EG=2$ units and $PE$ is perpendicular to $CG$
This implies,
PE is the perpendicular bisector of line segments DF and CG.
(d) (i) $AC = 2$ units and $FG = 1$ unit
This implies,
$AC > FG$
(ii) $CD=1$ unit and $GH=1$ unit
This implies,
\( \mathrm{CD}=\mathrm{GH} \)
(iii) $BC = 1$ unit and $EH = 3$ units
This implies,
$BC < EH$
Related Articles In figure below, \( l \| \mathrm{m} \) and line segments \( \mathrm{AB}, \mathrm{CD} \) and \( \mathrm{EF} \) are concurrent at point \( \mathrm{P} \).Prove that \( \frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{FD}} \)."
\( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{C} \). A line through the mid-point \( \mathrm{M} \) of hypotenuse \( \mathrm{AB} \) and parallel to \( \mathrm{BC} \) intersects \( \mathrm{AC} \) at \( \mathrm{D} \). Show that(i) \( \mathrm{D} \) is the mid-point of \( \mathrm{AC} \)(ii) \( \mathrm{MD} \perp \mathrm{AC} \)(iii) \( \mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB} \)
If \( \mathrm{B} \) is the mid point of \( \overline{\mathrm{AC}} \) and \( \mathrm{C} \) is the mid point of \( \overline{\mathrm{BD}} \), where \( \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \) lie on a straight line, say why \( \mathrm{AB}=\mathrm{CD} \)?
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is the perpendicular bisector of \( \mathrm{BC} \) (see Fig. 7.30). Show that \( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \)."\n
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
In figure below, line segment \( \mathrm{DF} \) intersect the side \( \mathrm{AC} \) of a triangle \( \mathrm{ABC} \) at the point \( \mathrm{E} \) such that \( \mathrm{E} \) is the mid-point of \( \mathrm{CA} \) and \( \angle \mathrm{AEF}=\angle \mathrm{AFE} \). Prove that \( \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}} \)[Hint: Take point \( \mathrm{G} \) on \( \mathrm{AB} \) such that \( \mathrm{CG} \| \mathrm{DF} \).]"
Choose the correct answer from the given four options:If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{EDF} \) and \( \Delta \mathrm{ABC} \) is not similar to \( \Delta \mathrm{D} \mathrm{EF} \), then which of the following is not true?(A) \( \mathrm{BC} \cdot \mathrm{EF}=\mathrm{A} C \cdot \mathrm{FD} \)(B) \( \mathrm{AB}, \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DE} \)(C) \( \mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF} \)(D) \( \mathrm{BC}, \mathrm{DE}=\mathrm{AB}, \mathrm{FD} \)
If \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) are three points on a line such that \( \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), which one of them lies between the other two?
\( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DBC} \) are two isosceles triangles on the same base \( B C \) and vertices \( A \) and \( D \) are on the same side of \( \mathrm{BC} \) (see Fig. 7.39). If \( \mathrm{AD} \) is extended to intersect \( \mathrm{BC} \) at \( \mathrm{P} \), show that(i) \( \triangle \mathrm{ABD} \equiv \triangle \mathrm{ACD} \)(ii) \( \triangle \mathrm{ABP} \cong \triangle \mathrm{ACP} \)(iii) \( \mathrm{AP} \) bisects \( \angle \mathrm{A} \) as well as \( \angle \mathrm{D} \).(iv) AP is the perpendicular bisector of \( \mathrm{BC} \)."
In \( \triangle \mathrm{ABC} \). the bisector of \( \angle \mathrm{A} \) intersects \( \mathrm{BC} \) at \( \mathrm{D} \). If \( \mathrm{AB}=8, \mathrm{AC}=10 \) and \( \mathrm{BC}=9 \), find \( \mathrm{BD} \) and \( \mathrm{DC} \).
ABCD is a quadrilateral in which \( P, Q, R \) and \( S \) are mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and \( \mathrm{DA} \) (see below figure). AC is a diagonal. Show that :(i) \( \mathrm{SR} \| \mathrm{AC} \) and \( \mathrm{SR}=\frac{1}{2} \mathrm{AC} \)(ii) \( \mathrm{PQ}=\mathrm{SR} \)(iii) \( \mathrm{PQRS} \) is a parallelogram."\n
\( \mathrm{O} \) is the point of intersection of the diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \). Through \( \mathrm{O} \), a line segment \( \mathrm{PQ} \) is drawn parallel to \( \mathrm{AB} \) meeting \( \mathrm{AD} \) in \( \mathrm{P} \) and \( \mathrm{BC} \) in \( \mathrm{Q} \). Prove that \( \mathrm{PO}=\mathrm{QO} \).
Draw any line segment \( \overline{\mathrm{AB}} \). Mark any point \( \mathrm{M} \) on it. Through \( \mathrm{M} \), draw a perpendicular to \( \overline{\mathrm{AB}} \). (use ruler and compasses)
Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
\( \mathrm{AC} \) and \( \mathrm{BD} \) are chords of a circle which bisect each other. Prove that (i) \( \mathrm{AC} \) and \( \mathrm{BD} \) are diameters, (ii) \( \mathrm{ABCD} \) is a rectangle.
Kickstart Your Career
Get certified by completing the course
Get Started