STRUTS 2 - ANNOTATIONS TYPES

Struts 2 applications can use Java 5 annotations as an alternative to XML and Java properties
configuration. Here is the list of most important annotations related to different categories:

Namespace Annotation ActionAnnotation

The @Namespace annotation allows the definition of an Action's namespace in the Action class
rather than based on Zero Configuration's conventions.

@Namespace ("/content")
public class Employee extends ActionSupport{

}

Result Annotation - ActionAnnotation

The @Result annotation allows the definition of Action results in the Action class rather than an
XML file.

@Result(name="success", value="/success.jsp")
public class Employee extends ActionSupport{

}...

Results Annotation - ActionAnnotation

The @Results annotation defines a set of results for an Action.

@Results({
@Result(name="success", value="/success.jsp"),
@Result(name="error", value="/error.jsp")

1)

public class Employee extends ActionSupport{

}...

After Annotation - InterceptorAnnotation

The @After annotation marks a action method that needs to be called after the main action
method and the result was executed. Return value is ignored.

public class Employee extends ActionSupport{
@After
public void isValid() throws ValidationException {
// validate model object, throw exception if failed
}

public String execute() {

// perform secure action
return SUCCESS;

}

Before Annotation - InterceptorAnnotation

The @Before annotation marks a action method that needs to be called before the main action
method and the result was executed. Return value is ignored.

public class Employee extends ActionSupport{
@Before
public void isAuthorized() throws AuthenticationException {

http://www.tutorialspoint.com/struts_2/struts_annotations_types.htm

// authorize request, throw exception if failed
}
public String execute() {

// perform secure action

return SUCCESS;

}

BeforeResult Annotation - InterceptorAnnotation

The @BeforeResult annotation marks a action method that needs to be executed before the result.
Return value is ignored.

public class Employee extends ActionSupport{
@BeforeResult
public void isValid() throws ValidationException {
// validate model object, throw exception if failed

}

public String execute() {
// perform action
return SUCCESS;

}

ConversionErrorFieldValidator Annotation - ValidationAnnotation

This validation annotation checks if there are any conversion errors for a field and applies them if
they exist.

public class Employee extends ActionSupport{
@ConversionErrorFieldValidator (message = "Default message",

key = "i18n.key", shortCircuit = true)
public String getName() {
return name;
}

}

DateRangeFieldValidator Annotation - ValidationAnnotation
This validation annotation checks that a date field has a value within a specified range.

public class Employee extends ActionSupport{
@DateRangeFieldValidator (message = "Default message",
key = "ii8n.key", shortCircuit = true,
min = "2005/01/01", max = "2005/12/31")
public String getDOB() {
return dob;
}

}

DoubleRangeFieldValidator Annotation - ValidationAnnotation

This validation annotation checks that a double field has a value within a specified range. If neither
min nor max is set, nothing will be done.

public class Employee extends ActionSupport{

@DoubleRangeFieldVvalidator (message = "Default message",
key = "ii18n.key", shortCircuit = true,
minInclusive = "0.123", maxInclusive = "99.987")

public String getIncome() {
return income;
}

EmailValidator Annotation - ValidationAnnotation

This validation annotation checks that a field is a valid e-mail address if it contains a non-empty
String.

public class Employee extends ActionSupport{
@EmailValidator (message = "Default message",
key = "ii18n.key", shortCircuit = true)

public String getEmail() {
return email;

b
b

ExpressionValidator Annotation - ValidationAnnotation
This non-field level validator validates a supplied regular expression.

@ExpressionValidator (message = "Default message", key = "il8n.key",
shortCircuit = true, expression = "an OGNL expression")

IntRangeFieldValidator Annotation - ValidationAnnotation

This validation annotation checks that a numeric field has a value within a specified range. If
neither min nor max is set, nothing will be done.

public class Employee extends ActionSupport{

@IntRangeFieldvValidator (message = "Default message",
key = "ii8n.key", shortCircuit = true,
min = "0", max = "42")

public String getAge() {
return age;

}
3

RegexFieldValidator Annotation - ValidationAnnotation

This annotation validates a string field using a regular expression.

@RegexFieldValidator(key = "regex.field", expression = "yourregexp")

RequiredFieldValidator Annotation - ValidationAnnotation

This validation annotation checks that a field is non-null. The annotation must be applied at
method level.

public class Employee extends ActionSupport{
@RequiredFieldvalidator (message = "Default message",
key = "ii18n.key", shortCircuit = true)

public String getAge() {
return age;
b

}

RequiredStringValidator Annotation - ValidationAnnotation

This validation annotation checks that a String field is not empty i. e. non — nullwithalength > 0.

public class Employee extends ActionSupport{

@RequiredStringvalidator (message = "Default message",

key = "i18n.key", shortCircuit = true, trim = true)
public String getName() {

return name;
}

}

StringLengthFieldValidator Annotation - ValidationAnnotation

This validator checks that a String field is of the right length. It assumes that the field is a String. If
neither minLength nor maxLength is set, nothing will be done.

public class Employee extends ActionSupport{

@StringLengthFieldVvalidator (message = "Default message",
key = "ii8n.key", shortCircuit = true,
trim = true, minLength = "5", maxLength = "12")

public String getName() {
return name;
}

}

UrlValidator Annotation - ValidationAnnotation

This validator checks that a field is a valid URL.

public class Employee extends ActionSupport{
@Urlvalidator (message = "Default message",
key = "i18n.key", shortCircuit = true)
public String getURL() {
return url;
}

}

Validations Annotation - ValidationAnnotation

If you want to use several annotations of the same type, these annotation must be nested within
the @Validations annotation.

public class Employee extends ActionSupport{

@validations(

requiredFields =
{@RequiredFieldValidator (type = ValidatorType.SIMPLE,
fieldName = "customfield",
message = "You must enter a value for field.")},

requiredStrings =
{@RequiredStringValidator (type = ValidatorType.SIMPLE,
fieldName = "stringisrequired",
message = "You must enter a value for string.")}

public String getName() {
return name;
}

}

CustomValidator Annotation - ValidationAnnotation

This annotation can be used for custom validators. Use the ValidationParameter annotation to
supply additional params.

@CustomValidator (type ="customValidatorName", fieldName = "myField")

Conversion Annotation - TypeConversionAnnotation

This is a marker annotation for type conversions at Type level. The Conversion annotation must be
applied at Type level.

@Conversion()
public class ConversionAction implements Action {
}

CreatelfNull Annotation - TypeConversionAnnotation

This annotation sets the CreatelfNull for type conversion. The CreatelfNull annotation must be
applied at field or method level.

@CreateIfNull(value = true)
private List<User> users;

Element Annotation - TypeConversionAnnotation

This annotation sets the Element for type conversion. The Element annotation must be applied at
field or method level.

@Element(value = com.acme.User)
private List<User> userlList;

Key Annotation - TypeConversionAnnotation

This annotation sets the Key for type conversion. The Key annotation must be applied at field or
method level.

@Key(value = java.lang.Long.class)
private Map<Long, User> userMap;

KeyProperty Annotation - TypeConversionAnnotation

This annotation sets the KeyProperty for type conversion. The KeyProperty annotation must be
applied at field or method level.

@KeyProperty(value = "userName")
protected List<User> users = null;

TypeConversion Annotation - TypeConversionAnnotation

This annotation annotation is used for class and application wide conversion rules. The
TypeConversion annotation can be applied at property and method level.

@TypeConversion(rule = ConversionRule.COLLECTION,
converter = "java.util.String")
public void setUsers(List users) {
this.users = users;
\
Processing math: 100%

