
http://www.tutorialspoint.com/struts_2/struts_annotations_types.htm Copyright © tutorialspoint.com

STRUTS 2 - ANNOTATIONS TYPESSTRUTS 2 - ANNOTATIONS TYPES

Struts 2 applications can use Java 5 annotations as an alternative to XML and Java properties
configuration. Here is the list of most important annotations related to different categories:

Namespace Annotation ActionAnnotation

The @Namespace annotation allows the definition of an Action's namespace in the Action class
rather than based on Zero Configuration's conventions.

@Namespace("/content")
public class Employee extends ActionSupport{
 ...
}

Result Annotation - ActionAnnotation

The @Result annotation allows the definition of Action results in the Action class rather than an
XML file.

@Result(name="success", value="/success.jsp")
public class Employee extends ActionSupport{
 ...
}

Results Annotation - ActionAnnotation

The @Results annotation defines a set of results for an Action.

@Results({
 @Result(name="success", value="/success.jsp"),
 @Result(name="error", value="/error.jsp")
})
public class Employee extends ActionSupport{
 ...
}

After Annotation - InterceptorAnnotation

The @After annotation marks a action method that needs to be called after the main action
method and the result was executed. Return value is ignored.

public class Employee extends ActionSupport{
 @After
 public void isValid() throws ValidationException {
 // validate model object, throw exception if failed
 }
 public String execute() {
 // perform secure action
 return SUCCESS;
 }
}

Before Annotation - InterceptorAnnotation

The @Before annotation marks a action method that needs to be called before the main action
method and the result was executed. Return value is ignored.

public class Employee extends ActionSupport{
 @Before
 public void isAuthorized() throws AuthenticationException {

http://www.tutorialspoint.com/struts_2/struts_annotations_types.htm

 // authorize request, throw exception if failed
 }
 public String execute() {
 // perform secure action
 return SUCCESS;
 }
}

BeforeResult Annotation - InterceptorAnnotation

The @BeforeResult annotation marks a action method that needs to be executed before the result.
Return value is ignored.

public class Employee extends ActionSupport{
 @BeforeResult
 public void isValid() throws ValidationException {
 // validate model object, throw exception if failed
 }

 public String execute() {
 // perform action
 return SUCCESS;
 }
}

ConversionErrorFieldValidator Annotation - ValidationAnnotation

This validation annotation checks if there are any conversion errors for a field and applies them if
they exist.

public class Employee extends ActionSupport{
 @ConversionErrorFieldValidator(message = "Default message",
 key = "i18n.key", shortCircuit = true)
 public String getName() {
 return name;
 }
}

DateRangeFieldValidator Annotation - ValidationAnnotation

This validation annotation checks that a date field has a value within a specified range.

public class Employee extends ActionSupport{
 @DateRangeFieldValidator(message = "Default message",
 key = "i18n.key", shortCircuit = true,
 min = "2005/01/01", max = "2005/12/31")
 public String getDOB() {
 return dob;
 }
}

DoubleRangeFieldValidator Annotation - ValidationAnnotation

This validation annotation checks that a double field has a value within a specified range. If neither
min nor max is set, nothing will be done.

public class Employee extends ActionSupport{

 @DoubleRangeFieldValidator(message = "Default message",
 key = "i18n.key", shortCircuit = true,
 minInclusive = "0.123", maxInclusive = "99.987")
 public String getIncome() {
 return income;
 }
}

EmailValidator Annotation - ValidationAnnotation

This validation annotation checks that a field is a valid e-mail address if it contains a non-empty
String.

public class Employee extends ActionSupport{

 @EmailValidator(message = "Default message",
 key = "i18n.key", shortCircuit = true)
 public String getEmail() {
 return email;
 }
}

ExpressionValidator Annotation - ValidationAnnotation

This non-field level validator validates a supplied regular expression.

@ExpressionValidator(message = "Default message", key = "i18n.key",
shortCircuit = true, expression = "an OGNL expression")

IntRangeFieldValidator Annotation - ValidationAnnotation

This validation annotation checks that a numeric field has a value within a specified range. If
neither min nor max is set, nothing will be done.

public class Employee extends ActionSupport{

 @IntRangeFieldValidator(message = "Default message",
 key = "i18n.key", shortCircuit = true,
 min = "0", max = "42")
 public String getAge() {
 return age;
 }
}

RegexFieldValidator Annotation - ValidationAnnotation

This annotation validates a string field using a regular expression.

@RegexFieldValidator(key = "regex.field", expression = "yourregexp")

RequiredFieldValidator Annotation - ValidationAnnotation

This validation annotation checks that a field is non-null. The annotation must be applied at
method level.

public class Employee extends ActionSupport{

 @RequiredFieldValidator(message = "Default message",
 key = "i18n.key", shortCircuit = true)
 public String getAge() {
 return age;
 }
}

RequiredStringValidator Annotation - ValidationAnnotation

This validation annotation checks that a String field is not empty i. e. non − nullwithalength > 0.

public class Employee extends ActionSupport{

 @RequiredStringValidator(message = "Default message",

 key = "i18n.key", shortCircuit = true, trim = true)
 public String getName() {
 return name;
 }
}

StringLengthFieldValidator Annotation - ValidationAnnotation

This validator checks that a String field is of the right length. It assumes that the field is a String. If
neither minLength nor maxLength is set, nothing will be done.

public class Employee extends ActionSupport{

 @StringLengthFieldValidator(message = "Default message",
 key = "i18n.key", shortCircuit = true,
 trim = true, minLength = "5", maxLength = "12")
 public String getName() {
 return name;
 }
}

UrlValidator Annotation - ValidationAnnotation

This validator checks that a field is a valid URL.

public class Employee extends ActionSupport{

 @UrlValidator(message = "Default message",
 key = "i18n.key", shortCircuit = true)
 public String getURL() {
 return url;
 }
}

Validations Annotation - ValidationAnnotation

If you want to use several annotations of the same type, these annotation must be nested within
the @Validations annotation.

public class Employee extends ActionSupport{

 @Validations(
 requiredFields =
 {@RequiredFieldValidator(type = ValidatorType.SIMPLE,
 fieldName = "customfield",
 message = "You must enter a value for field.")},
 requiredStrings =
 {@RequiredStringValidator(type = ValidatorType.SIMPLE,
 fieldName = "stringisrequired",
 message = "You must enter a value for string.")}
)
 public String getName() {
 return name;
 }
}

CustomValidator Annotation - ValidationAnnotation

This annotation can be used for custom validators. Use the ValidationParameter annotation to
supply additional params.

@CustomValidator(type ="customValidatorName", fieldName = "myField")

Conversion Annotation - TypeConversionAnnotation

This is a marker annotation for type conversions at Type level. The Conversion annotation must be
applied at Type level.

@Conversion()
 public class ConversionAction implements Action {
}

CreateIfNull Annotation - TypeConversionAnnotation

This annotation sets the CreateIfNull for type conversion. The CreateIfNull annotation must be
applied at field or method level.

@CreateIfNull(value = true)
private List<User> users;

Element Annotation - TypeConversionAnnotation

This annotation sets the Element for type conversion. The Element annotation must be applied at
field or method level.

@Element(value = com.acme.User)
private List<User> userList;

Key Annotation - TypeConversionAnnotation

This annotation sets the Key for type conversion. The Key annotation must be applied at field or
method level.

@Key(value = java.lang.Long.class)
private Map<Long, User> userMap;

KeyProperty Annotation - TypeConversionAnnotation

This annotation sets the KeyProperty for type conversion. The KeyProperty annotation must be
applied at field or method level.

@KeyProperty(value = "userName")
protected List<User> users = null;

TypeConversion Annotation - TypeConversionAnnotation

This annotation annotation is used for class and application wide conversion rules. The
TypeConversion annotation can be applied at property and method level.

@TypeConversion(rule = ConversionRule.COLLECTION,
converter = "java.util.String")
public void setUsers(List users) {
 this.users = users;
}

Processing math: 100%

