State whether the following statements are true or false. Justify your answer.$\triangle \mathrm{ABC}$ with vertices $\mathrm{A}(-2,0), \mathrm{B}(2,0)$ and $\mathrm{C}(0,2)$ is similar to $\triangle \mathrm{DEF}$ with vertices $D(-4,0) E(4,0)$ and $F(0,4)$.

Complete Python Prime Pack for 2023

9 Courses     2 eBooks

Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

Java Prime Pack 2023

9 Courses     2 eBooks

Given:

$\triangle \mathrm{ABC}$ with vertices $\mathrm{A}(-2,0), \mathrm{B}(2,0)$ and $\mathrm{C}(0,2)$ is similar to $\triangle \mathrm{DEF}$ with vertices $D(-4,0) E(4,0)$ and $F(0,4)$.

To do:

We have to find whether the given statement is true or false.

Solution:

We know that,

The distance between the points $(x_{1}, y_{1})$ and $(x_{2}, y_{2}) =\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$

Therefore,

In $\triangle A B C$,

The distance between $A(2,0)$ and $B(2,0)$ is,

$A B=\sqrt{[2-(2)]^{2}+(0-0)^{2}}$

$=4$

The distance between $B(2,0)$ and $C(0,2)$ is,

$B C=\sqrt{(0-2)^{2}+(2-0)^{2}}$

$=\sqrt{4+4}$

$=2 \sqrt{2}$

The distance between $C(0,2)$ and $A-(2,0)$ is,

$C A=\sqrt{[0-(2)^{2}]+(2-0)^{2}}$

$=\sqrt{4+4}$

$=2 \sqrt{2}$

In $\triangle D E F$,

The distance between $F(0,4)$ and $D(-4,0)$ is,

$F D=\sqrt{(0+4)^{2}+(0-4)^{2}}$

$=\sqrt{4^{2}+(-4)^{2}}$

$=4 \sqrt{2}$

The distance between $F(0,4)$ and $E(4,0)$ is,

$F E=\sqrt{(4-0)^{2}+(0-4)^{2}}$

$=\sqrt{4^{2}+4^{2}}$

$=4 \sqrt{2}$

The distance between $E(4,0)$ and $D(-4,0)$ is,

$E D=\sqrt{[4-(-4)]^{2}+(0)^{2}}$

$=\sqrt{8^{2}}$

$=8$

This implies,

$\frac{A B}{D E}=\frac{4}{8}$

$=\frac{1}{2}$

$\frac{A C}{D F}=\frac{2 \sqrt{2}}{4 \sqrt{2}}$

$=\frac{1}{2}$

$\frac{B C}{E F}=\frac{2 \sqrt{2}}{4 \sqrt{2}}$

$=\frac{1}{2}$

Here,

$\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$

Therefore, by SSS similarity,

$\triangle A B C \sim \triangle D E F$ Hence, the given statement is true.

Updated on 10-Oct-2022 13:28:28