
http://www.tutorialspoint.com/sqlite/sqlite_logical_operators.htm Copyright © tutorialspoint.com

SQLITE - LOGICAL OPERATORSSQLITE - LOGICAL OPERATORS

Here is a list of all the logical operators available in SQLite

Operator Description

AND The AND operator allows the existence of multiple conditions in an SQL
statement's WHERE clause.

BETWEEN The BETWEEN operator is used to search for values that are within a set of
values, given the minimum value and the maximum value.

EXISTS The EXISTS operator is used to search for the presence of a row in a
specified table that meets certain criteria.

IN The IN operator is used to compare a value to a list of literal values that
have been specified.

NOT IN The negation of IN operator which is used to compare a value to a list of
literal values that have been specified.

LIKE The LIKE operator is used to compare a value to similar values using
wildcard operators.

GLOB The GLOB operator is used to compare a value to similar values using
wildcard operators. Also, GLOB is case sensitive, unlike LIKE.

NOT The NOT operator reverses the meaning of the logical operator with which it
is used. Eg. NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is negate
operator.

OR The OR operator is used to combine multiple conditions in an SQL
statement's WHERE clause.

IS NULL The NULL operator is used to compare a value with a NULL value.

IS The IS operator work like =

IS NOT The IS operator work like !=

|| Adds two different strings and make new one.

UNIQUE The UNIQUE operator searches every row of a specified table for uniqueness
noduplicates.

Example
Consider COMPANY table has the following records:

ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Here are simple examples showing usage of SQLite Logical Operators. Following SELECT
statement lists down all the records where AGE is greater than or equal to 25 and salary is greater

http://www.tutorialspoint.com/sqlite/sqlite_logical_operators.htm

than or equal to 65000.00:

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 AND SALARY >= 65000;
ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is greater than or equal to 25 OR
salary is greater than or equal to 65000.00:

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 OR SALARY >= 65000;
ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is not NULL which means all the
records because none of the record is having AGE equal to NULL:

sqlite> SELECT * FROM COMPANY WHERE AGE IS NOT NULL;
ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does not matter
what comes after 'Ki'.

sqlite> SELECT * FROM COMPANY WHERE NAME LIKE 'Ki%';
ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does not matter
what comes after 'Ki':

sqlite> SELECT * FROM COMPANY WHERE NAME GLOB 'Ki*';
ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where AGE value is either 25 or 27:

sqlite> SELECT * FROM COMPANY WHERE AGE IN (25, 27);
ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE value is neither 25 nor 27:

sqlite> SELECT * FROM COMPANY WHERE AGE NOT IN (25, 27);
ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where AGE value is in BETWEEN 25 AND 27:

sqlite> SELECT * FROM COMPANY WHERE AGE BETWEEN 25 AND 27;
ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement makes use of SQL sub-query where sub-query finds all the records
with AGE field having SALARY > 65000 and later WHERE clause is being used along with EXISTS
operator to list down all the records where AGE from the outside query exists in the result returned
by sub-query:

sqlite> SELECT AGE FROM COMPANY
 WHERE EXISTS (SELECT AGE FROM COMPANY WHERE SALARY > 65000);
AGE

32
25
23
25
27
22
24

Following SELECT statement makes use of SQL sub-query where subquery finds all the records with
AGE field having SALARY > 65000 and later WHERE clause is being used along with > operator to
list down all the records where AGE from outside query is greater than the age in the result
returned by sub-query:

sqlite> SELECT * FROM COMPANY
 WHERE AGE > (SELECT AGE FROM COMPANY WHERE SALARY > 65000);
ID NAME AGE ADDRESS SALARY
---------- ---------- ---------- ---------- ----------
1 Paul 32 California 20000.0

Loading [MathJax]/jax/output/HTML-CSS/jax.js

