SQL - UNIONS CLAUSE

The SQL UNION clause/operator is used to combine the results of two or more SELECT statements
without returning any duplicate rows.

To use UNION, each SELECT must have the same number of columns selected, the same number
of column expressions, the same data type, and have them in the same order, but they do not
have to be the same length.

Syntax:

The basic syntax of UNION is as follows:

SELECT columnl [, column2]
FROM tablel [, table2]
[WHERE condition]

UNION

SELECT columni [, column2]

FROM tablel [, table2]
[WHERE condition]

Here given condition could be any given expression based on your requirement.

Example:

Consider the following two tables, a CUSTOMERS table is as follows:

Foocoofrcocooooooo +----- foccoocooocoooo Focoocooooo +
| ID | NAME | AGE | ADDRESS | SALARY |
foccodncososooas +-- - - - fbomcoco=o=o-= foccccoo=o= +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
foccodncososooas +-- - - - fbomcoco=o=o-= foccccoo=o= +

S oo S coccococoooccoooooooos e coococoooooos oo oocooo +
|0ID | DATE | CUSTOMER_ID | AMOUNT |
S oo o coooocoooocooooooooos o cococoooooooo froooocooo +
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
Foom - - frocoocooccooooooooooooos fococooocsooooos fooocooooo +

Now, let us join these two tables in our SELECT statement as follows:

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID
UNION

SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

http://www.tutorialspoint.com/sql/sql-unions-clause.htm

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result:

Foocoooo focococoooooo o ocoocoooo focoocoooocooocoocooooooo +
| ID | NAME | AMOUNT | DATE |
frocoooe fmocoocoooo fmocoooos ffoccoocoocoocoocoooooo +
1	Ramesh [NULL	NULL	
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
focoooe fmocoosoooo fmocoooos ffmccoocoococcoocoooooo +

The UNION ALL Clause:

The UNION ALL operator is used to combine the results of two SELECT statements including
duplicate rows.

The same rules that apply to UNION apply to the UNION ALL operator.
Syntax:

The basic syntax of UNION ALL is as follows:

SELECT columnl [, column2]
FROM tablel [, table2]
[WHERE condition]

UNION ALL

SELECT columnl [, column2]

FROM tablel [, table2]
[WHERE condition]

Here given condition could be any given expression based on your requirement.
Example:

Consider the following two tables, a CUSTOMERS table is as follows:

Foocoofoocooooooo +----- fococoocooocoooo Focooocooooo +
| ID | NAME | AGE | ADDRESS | SALARY |
Foooofoocooooooo +----- focoocooocoooo Fococoocooooo +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Foooofoocooooooo +----- focoocooocoooo Fococoocooooo +

b Another table is ORDERS as follows:

Foom - - frocoocooccooooooooooooos fococooocsooooos fooocooooo +
|0ID | DATE | CUSTOMER_ID | AMOUNT |
fooooc e cococccoooocooooooooos o cocococoooooos roooocooo +
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060

focooc e cccoccccocoocoocoooooooo froccccococococoooo froccocoooo +

Now, let us join these two tables in our SELECT statement as follows:

SQL> SELECT 1ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID
UNION ALL

SELECT 1ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID,

This would produce the following result:

fooccooo focoooooooo fooooooos fbmmoocococococo-o=o=os +
| ID | NAME | AMOUNT | DATE |
focoooe fmocoosoooo fmocoooos ffmccoocoococcoocoooooo +
1	Ramesh	NULL	NULL
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
2	Khilan	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
Foocoooo focococoooooo o ocoocoooo focoocoooocooocoocooooooo +

There are two other clauses i. e., operators, which are very similar to UNION clause:

e SQL INTERSECT Clause: is used to combine two SELECT statements, but returns rows only
from the first SELECT statement that are identical to a row in the second SELECT statement.

e SQL EXCEPT Clause : combines two SELECT statements and returns rows from the first

—CELECT ctatamant that ara nat retyrned by the second SELECT statement.
Loading [Mathjax]/jax/output/HTML-CSS/jax.js

/sql/sql-intersect-clause.htm
/sql/sql-except-clause.htm

