
http://www.tutorialspoint.com/spring/spring_quick_guide.htm Copyright © tutorialspoint.com

SPRING - QUICK GUIDESPRING - QUICK GUIDE

Spring is the most popular application development framework for enterprise Java. Millions of
developers around the world use Spring Framework to create high performing, easily testable,
reusable code.

Spring framework is an open source Java platform and it was initially written by Rod Johnson and
was first released under the Apache 2.0 license in June 2003.

Spring is lightweight when it comes to size and transparency. The basic version of spring
framework is around 2MB.

The core features of the Spring Framework can be used in developing any Java application, but
there are extensions for building web applications on top of the Java EE platform. Spring
framework targets to make J2EE development easier to use and promote good programming
practice by enabling a POJO-based programming model.

Benefits of Using Spring Framework:
Following is the list of few of the great benefits of using Spring Framework:

Spring enables developers to develop enterprise-class applications using POJOs. The benefit
of using only POJOs is that you do not need an EJB container product such as an application
server but you have the option of using only a robust servlet container such as Tomcat or
some commercial product.

Spring is organized in a modular fashion. Even though the number of packages and classes
are substantial, you have to worry only about ones you need and ignore the rest.

Spring does not reinvent the wheel instead, it truly makes use of some of the existing
technologies like several ORM frameworks, logging frameworks, JEE, Quartz and JDK timers,
other view technologies.

Testing an application written with Spring is simple because environment-dependent code is
moved into this framework. Furthermore, by using JavaBean-style POJOs, it becomes easier to
use dependency injection for injecting test data.

Spring's web framework is a well-designed web MVC framework, which provides a great
alternative to web frameworks such as Struts or other over engineered or less popular web
frameworks.

Spring provides a convenient API to translate technology-specific exceptions
thrownbyJDBC, Hibernate, orJDO, forexample into consistent, unchecked exceptions.

Lightweight IoC containers tend to be lightweight, especially when compared to EJB
containers, for example. This is beneficial for developing and deploying applications on
computers with limited memory and CPU resources.

Spring provides a consistent transaction management interface that can scale down to a
local transaction usingasingledatabase, forexample and scale up to global transactions
usingJTA, forexample.

SPRING FRAMEWORK ARCHITECTURESPRING FRAMEWORK ARCHITECTURE
Spring could potentially be a one-stop shop for all your enterprise applications, however, Spring is
modular, allowing you to pick and choose which modules are applicable to you, without having to
bring in the rest. Following section gives detail about all the modules available in Spring
Framework.

The Spring Framework provides about 20 modules which can be used based on an application
requirement.

http://www.tutorialspoint.com/spring/spring_quick_guide.htm

Core Container:
The Core Container consists of the Core, Beans, Context, and Expression Language modules
whose detail is as follows:

The Core module provides the fundamental parts of the framework, including the IoC and
Dependency Injection features.

The Bean module provides BeanFactory which is a sophisticated implementation of the
factory pattern.

The Context module builds on the solid base provided by the Core and Beans modules and
it is a medium to access any objects defined and configured. The ApplicationContext
interface is the focal point of the Context module.

The SpEL module provides a powerful expression language for querying and manipulating
an object graph at runtime.

Data Access/Integration:
The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS and Transaction modules
whose detail is as follows:

The JDBC module provides a JDBC-abstraction layer that removes the need to do tedious
JDBC related coding.

The ORM module provides integration layers for popular object-relational mapping APIs,
including JPA, JDO, Hibernate, and iBatis.

The OXM module provides an abstraction layer that supports Object/XML mapping
implementations for JAXB, Castor, XMLBeans, JiBX and XStream.

The Java Messaging Service JMS module contains features for producing and consuming
messages.

The Transaction module supports programmatic and declarative transaction management
for classes that implement special interfaces and for all your POJOs.

Web:
The Web layer consists of the Web, Web-MVC, Web-Socket, and Web-Portlet modules whose detail
is as follows:

The Web module provides basic web-oriented integration features such as multipart file-

upload functionality and the initialization of the IoC container using servlet listeners and a
web-oriented application context.

The Web-MVC module contains Spring's model-view-controller MVC implementation for web
applications.

The Web-Socket module provides support for WebSocket-based, two-way communication
between client and server in web applications.

The Web-Portlet module provides the MVC implementation to be used in a portlet
environment and mirrors the functionality of Web-Servlet module.

Miscellaneous:
There are few other important modules like AOP, Aspects, Instrumentation, Web and Test modules
whose detail is as follows:

The AOP module provides aspect-oriented programming implementation allowing you to
define method-interceptors and pointcuts to cleanly decouple code that implements
functionality that should be separated.

The Aspects module provides integration with AspectJ which is again a powerful and mature
aspect oriented programming AOP framework.

The Instrumentation module provides class instrumentation support and class loader
implementations to be used in certain application servers.

The Messaging module provides support for STOMP as the WebSocket sub-protocol to use in
applications. It also supports an annotation programming model for routing and processing
STOMP messages from WebSocket clients.

The Test module supports the testing of Spring components with JUnit or TestNG
frameworks.

SPRING ENVIRONMENT SETUPSPRING ENVIRONMENT SETUP
I assume you already have setup for Java Development Kit JDK and Eclipse IDE. So now let us see
how to setup Spring Framework libraries:

Following are the simple steps to download and install the framework on your machine.

Make a choice whether you want to install Spring on Windows, or Unix and then proceed to
the next step to download .zip file for windows and .tz file for Unix.

Download the latest version of Spring framework binaries from
http://repo.spring.io/release/org/springframework/spring.

At the time of writing this tutorial, I downloaded spring-framework-4.1.6.RELEASE-
dist.zip and when you unzip the downloaded file it will give you directory structure inside
E:\spring as follows.

You will find all the Spring libraries in the directory E:\spring\libs. Make sure you set your
CLASSPATH variable on this directory properly otherwise you will face problem while running your
application.

Once you are done with this last step, you are ready to proceed for your first Spring Example.

http://repo.spring.io/release/org/springframework/spring

SPRING HELLO WORLD EXAMPLESPRING HELLO WORLD EXAMPLE
Let us start actual programming with Spring Framework. Before you start writing your first
example using Spring framework, you have make sure that you have setup your Spring
environment properly as explained in Spring - Environment Setup tutorial. I also assume that you
have a little bit working knowledge with Eclipse IDE.

So let us proceed to write a simple Spring Application which will print "Hello World!" or any other
message based on the configuration done in Spring Beans Configuration file.

Step 1 - Create Java Project:
The first step is to create a simple Java Project using Eclipse IDE. Follow the option File -> New ->
Project and finally select Java Project wizard from the wizard list. Now name your project as
HelloSpring using the wizard window as follows:

Once your project is created successfully, you will have following content in your Project
Explorer:

/spring/spring_environment_setup.htm

Step 2 - Add Required Libraries:
As a second step let us add Spring Framework and common logging API libraries in our project. To
do this, right click on your project name HelloSpring and then follow the following option
available in context menu: Build Path -> Configure Build Path to display the Java Build Path
window as follows:

Now use Add External JARs button available under Libraries tab to add the following core JARs
from Spring Framework and Common Logging installation directories:

commons-logging-1.1.1

spring-aop-4.1.6.RELEASE

spring-aspects-4.1.6.RELEASE

spring-beans-4.1.6.RELEASE

spring-context-4.1.6.RELEASE

spring-context-support-4.1.6.RELEASE

spring-core-4.1.6.RELEASE

spring-expression-4.1.6.RELEASE

spring-instrument-4.1.6.RELEASE

spring-instrument-tomcat-4.1.6.RELEASE

spring-jdbc-4.1.6.RELEASE

spring-jms-4.1.6.RELEASE

spring-messaging-4.1.6.RELEASE

spring-orm-4.1.6.RELEASE

spring-oxm-4.1.6.RELEASE

spring-test-4.1.6.RELEASE

spring-tx-4.1.6.RELEASE

spring-web-4.1.6.RELEASE

spring-webmvc-4.1.6.RELEASE

spring-webmvc-portlet-4.1.6.RELEASE

spring-websocket-4.1.6.RELEASE

Step 3 - Create Source Files:
Now let us create actual source files under the HelloSpring project. First we need to create a
package called com.tutorialspoint. To do this, right click on src in package explorer section and
follow the option : New -> Package.

Next we will create HelloWorld.java and MainApp.java files under the com.tutorialspoint
package.

Here is the content of HelloWorld.java file:

package com.tutorialspoint;

public class HelloWorld {
 private String message;

 public void setMessage(String message){
 this.message = message;
 }

 public void getMessage(){
 System.out.println("Your Message : " + message);
 }
}

Following is the content of the second file MainApp.java:

package com.tutorialspoint;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MainApp {
 public static void main(String[] args) {
 ApplicationContext context =
 new ClassPathXmlApplicationContext("Beans.xml");

 HelloWorld obj = (HelloWorld) context.getBean("helloWorld");

 obj.getMessage();
 }
}

There are following two important points to note about the main program:

First step is to create application context where we used framework API
ClassPathXmlApplicationContext. This API loads beans configuration file and eventually
based on the provided API, it takes care of creating and initializing all the objects ie. beans
mentioned in the configuration file.

Second step is used to get required bean using getBean method of the created context. This
method uses bean ID to return a generic object which finally can be casted to actual object.
Once you have object, you can use this object to call any class method.

Step 4 - Create Bean Configuration File:
You need to create a Bean Configuration file which is an XML file and acts as cement that glues the
beans ie. classes together. This file needs to be created under the src directory as shown below:

Usually developers keep this file name as Beans.xml, but you are independent to choose any
name you like. You have to make sure that this file is available in CLASSPATH and use the same
name in main application while creating application context as shown in MainApp.java file.

The Beans.xml is used to assign unique IDs to different beans and to control the creation of objects
with different values without impacting any of the Spring source files. For example, using below file
you can pass any value for "message" variable and so you can print different values of message
without impacting HelloWorld.java and MainApp.java files. Let us see how it works:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean >
 <property name="message" value="Hello World!"/>
 </bean>

</beans>

When Spring application gets loaded into the memory, Framework makes use of the above
configuration file to create all the beans defined and assign them a unique ID as defined in
<bean> tag. You can use <property> tag to pass the values of different variables used at the
time of object creation.

Step 5 - Running the Program:
Once you are done with creating source and beans configuration files, you are ready for this step
which is compiling and running your program. To do this, Keep MainApp.Java file tab active and
use either Run option available in the Eclipse IDE or use Ctrl + F11 to compile and run your
MainApp application. If everything is fine with your application, this will print the following
message in Eclipse IDE's console:

Your Message : Hello World!

SPRING IOC CONTAINERSSPRING IOC CONTAINERS
The Spring container is at the core of the Spring Framework. The container will create the objects,
wire them together, configure them, and manage their complete lifecycle from creation till
destruction. The Spring container uses dependency injection DI to manage the components that
make up an application. These objects are called Spring Beans which we will discuss in next
chapter.

The container gets its instructions on what objects to instantiate, configure, and assemble by
reading configuration metadata provided. The configuration metadata can be represented either
by XML, Java annotations, or Java code. The following diagram is a high-level view of how Spring
works. The Spring IoC container makes use of Java POJO classes and configuration metadata to
produce a fully configured and executable system or application.

Spring provides following two distinct types of containers.

S.N. Container & Description

1 Spring BeanFactory Container

This is the simplest container providing basic support for DI and defined by the
org.springframework.beans.factory.BeanFactory interface. The BeanFactory and related
interfaces, such as BeanFactoryAware, InitializingBean, DisposableBean, are still present
in Spring for the purposes of backward compatibility with the large number of third-party
frameworks that integrate with Spring.

2 Spring ApplicationContext Container

This container adds more enterprise-specific functionality such as the ability to resolve
textual messages from a properties file and the ability to publish application events to
interested event listeners. This container is defined by the
org.springframework.context.ApplicationContext interface.

The ApplicationContext container includes all functionality of the BeanFactory container, so it is
generally recommended over the BeanFactory. BeanFactory can still be used for light weight
applications like mobile devices or applet based applications where data volume and speed is
significant.

SPRING BEAN DEFINITIONSPRING BEAN DEFINITION
The objects that form the backbone of your application and that are managed by the Spring IoC
container are called beans. A bean is an object that is instantiated, assembled, and otherwise
managed by a Spring IoC container. These beans are created with the configuration metadata that
you supply to the container, for example, in the form of XML <bean/> definitions which you have
already seen in previous chapters.

The bean definition contains the information called configuration metadata which is needed for
the container to know the followings:

How to create a bean

Bean's lifecycle details

Bean's dependencies

All the above configuration metadata translates into a set of the following properties that make up
each bean definition.

Properties Description

class This attribute is mandatory and specify the bean class to be used to create the

/spring/spring_beanfactory_container.htm
/spring/spring_applicationcontext_container.htm

bean.

name This attribute specifies the bean identifier uniquely. In XML-based configuration
metadata, you use the id and/or name attributes to specify the bean identifiers.

scope This attribute specifies the scope of the objects created from a particular bean
definition and it will be discussed in bean scopes chapter.

constructor-
arg

This is used to inject the dependencies and will be discussed in next chapters.

properties This is used to inject the dependencies and will be discussed in next chapters.

autowiring
mode

This is used to inject the dependencies and will be discussed in next chapters.

lazy-
initialization
mode

A lazy-initialized bean tells the IoC container to create a bean instance when it is
first requested, rather than at startup.

initialization
method

A callback to be called just after all necessary properties on the bean have been
set by the container. It will be discussed in bean life cycle chapter.

destruction
method

A callback to be used when the container containing the bean is destroyed. It will
be discussed in bean life cycle chapter.

Spring Configuration Metadata
Spring IoC container is totally decoupled from the format in which this configuration metadata is
actually written. There are following three important methods to provide configuration metadata
to the Spring Container:

XML based configuration file.

Annotation-based configuration

Java-based configuration

You already have seen how XML based configuration metadata provided to the container, but let
us see another sample of XML based configuration file with different bean definitions including
lazy initialization, initialization method and destruction method:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <!-- A simple bean definition -->
 <bean >
 <!-- collaborators and configuration for this bean go here -->
 </bean>

 <!-- A bean definition with lazy init set on -->
 <bean >
 <!-- collaborators and configuration for this bean go here -->
 </bean>

 <!-- A bean definition with initialization method -->
 <bean >
 <!-- collaborators and configuration for this bean go here -->
 </bean>

 <!-- A bean definition with destruction method -->
 <bean >
 <!-- collaborators and configuration for this bean go here -->

 </bean>

 <!-- more bean definitions go here -->

</beans>

SPRING BEAN SCOPESSPRING BEAN SCOPES
When defining a <bean> in Spring, you have the option of declaring a scope for that bean. For
example, To force Spring to produce a new bean instance each time one is needed, you should
declare the bean's scope attribute to be prototype. Similar way if you want Spring to return the
same bean instance each time one is needed, you should declare the bean's scope attribute to be
singleton.

The Spring Framework supports following five scopes, three of which are available only if you use
a web-aware ApplicationContext.

Scope Description

singleton This scopes the bean definition to a single instance per Spring IoC container default.

prototype This scopes a single bean definition to have any number of object instances.

request This scopes a bean definition to an HTTP request. Only valid in the context of a web-
aware Spring ApplicationContext.

session This scopes a bean definition to an HTTP session. Only valid in the context of a web-
aware Spring ApplicationContext.

global-
session

This scopes a bean definition to a global HTTP session. Only valid in the context of a
web-aware Spring ApplicationContext.

SPRING BEAN LIFE CYCLESPRING BEAN LIFE CYCLE
The life cycle of a Spring bean is easy to understand. When a bean is instantiated, it may be
required to perform some initialization to get it into a usable state. Similarly, when the bean is no
longer required and is removed from the container, some cleanup may be required.

Though, there is lists of the activities that take place behind the scenes between the time of bean
Instantiation and its destruction, but this chapter will discuss only two important bean lifecycle
callback methods which are required at the time of bean initialization and its destruction.

To define setup and teardown for a bean, we simply declare the <bean> with init-method and/or
destroy-method parameters. The init-method attribute specifies a method that is to be called on
the bean immediately upon instantiation. Similarly, destroy-method specifies a method that is
called just before a bean is removed from the container.

Initialization callbacks:
The org.springframework.beans.factory.InitializingBean interface specifies a single method:

void afterPropertiesSet() throws Exception;

So you can simply implement above interface and initialization work can be done inside
afterPropertiesSet method as follows:

public class ExampleBean implements InitializingBean {
 public void afterPropertiesSet() {
 // do some initialization work
 }
}

In the case of XML-based configuration metadata, you can use the init-method attribute to
specify the name of the method that has a void no-argument signature. For example:

<bean
 />

Following is the class definition:

public class ExampleBean {
 public void init() {
 // do some initialization work
 }
}

Destruction callbacks
The org.springframework.beans.factory.DisposableBean interface specifies a single method:

void destroy() throws Exception;

So you can simply implement above interface and finalization work can be done inside destroy
method as follows:

public class ExampleBean implements DisposableBean {
 public void destroy() {
 // do some destruction work
 }
}

In the case of XML-based configuration metadata, you can use the destroy-method attribute to
specify the name of the method that has a void no-argument signature. For example:

<bean
 />

Following is the class definition:

public class ExampleBean {
 public void destroy() {
 // do some destruction work
 }
}

SPRING DEPENDENCY INJECTIONSPRING DEPENDENCY INJECTION
Every java based application has a few objects that work together to present what the end-user
sees as a working application. When writing a complex Java application, application classes should
be as independent as possible of other Java classes to increase the possibility to reuse these
classes and to test them independently of other classes while doing unit testing. Dependency
Injection orsometimecalledwiring helps in gluing these classes together and same time keeping them
independent.

Consider you have an application which has a text editor component and you want to provide spell
checking. Your standard code would look something like this:

public class TextEditor {
 private SpellChecker spellChecker;
 public TextEditor() {
 spellChecker = new SpellChecker();
 }
}

What we've done here is create a dependency between the TextEditor and the SpellChecker. In an
inversion of control scenario we would instead do something like this:

public class TextEditor {
 private SpellChecker spellChecker;
 public TextEditor(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }
}

Here TextEditor should not worry about SpellChecker implementation. The SpellChecker will be
implemented independently and will be provided to TextEditor at the time of TextEditor
instantiation and this entire procedure is controlled by the Spring Framework.

Here, we have removed the total control from TextEditor and kept it somewhere else
ie. XMLconfigurationfile and the dependency ie. classSpellChecker is being injected into the class
TextEditor through a Class Constructor. Thus flow of control has been "inverted" by Dependency
Injection DI because you have effectively delegated dependances to some external system.

Second method of injecting dependency is through Setter Methods of TextEditor class where we
will create SpellChecker instance and this instance will be used to call setter methods to initialize
TextEditor's properties.

Thus, DI exists in two major variants and following two sub-chapters will cover both of them with
examples:

S.N. Dependency Injection Type & Description

1 Constructor-based dependency injection

Constructor-based DI is accomplished when the container invokes a class constructor
with a number of arguments, each representing a dependency on other class.

2 Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans
after invoking a no-argument constructor or no-argument static factory method to
instantiate your bean.

EVENT HANDLING IN SPRINGEVENT HANDLING IN SPRING
You have seen in all the chapters that core of Spring is the ApplicationContext, which manages
complete life cycle of the beans. The ApplicationContext publishes certain types of events when
loading the beans. For example, a ContextStartedEvent is published when the context is started
and ContextStoppedEvent is published when the context is stopped.

Event handling in the ApplicationContext is provided through the ApplicationEvent class and
ApplicationListener interface. So if a bean implements the ApplicationListener, then every time an
ApplicationEvent gets published to the ApplicationContext, that bean is notified.

Spring provides the following standard events:

S.N. Spring Built-in Events & Description

1
ContextRefreshedEvent

This event is published when the ApplicationContext is either initialized or refreshed. This
can also be raised using the refresh method on the ConfigurableApplicationContext
interface.

/spring/constructor_based_dependency_injection.htm
/spring/setter_based_dependency_injection.htm

2
ContextStartedEvent

This event is published when the ApplicationContext is started using the start method on
the ConfigurableApplicationContext interface. You can poll your database or you can
re/start any stopped application after receiving this event.

3
ContextStoppedEvent

This event is published when the ApplicationContext is stopped using the stop method on
the ConfigurableApplicationContext interface. You can do required housekeep work after
receiving this event.

4
ContextClosedEvent

This event is published when the ApplicationContext is closed using the close method on
the ConfigurableApplicationContext interface. A closed context reaches its end of life; it
cannot be refreshed or restarted.

5
RequestHandledEvent

This is a web-specific event telling all beans that an HTTP request has been serviced.

Spring's event handling is single-threaded so if an event is published, until and unless all the
receivers get the message, the processes are blocked and the flow will not continue. Hence, care
should be taken when designing your application if event handling is to be used.

Listening to Context Events:
To listen a context event, a bean should implement the ApplicationListener interface which has
just one method onApplicationEvent. So let us write an example to see how the events
propagates and how you can put your code to do required task based on certain events.

Let us have working Eclipse IDE in place and follow the following steps to create a Spring
application:

Step Description

1 Create a project with a name SpringExample and create a package com.tutorialspoint
under the src folder in the created project.

2 Add required Spring libraries using Add External JARs option as explained in the Spring
Hello World Example chapter.

3 Create Java classes HelloWorld, CStartEventHandler, CStopEventHandler and MainApp
under the com.tutorialspoint package.

4 Create Beans configuration file Beans.xml under the src folder.

5 The final step is to create the content of all the Java files and Bean Configuration file and
run the application as explained below.

Here is the content of HelloWorld.java file:

package com.tutorialspoint;

public class HelloWorld {
 private String message;

 public void setMessage(String message){
 this.message = message;
 }

 public void getMessage(){
 System.out.println("Your Message : " + message);
 }
}

Following is the content of the CStartEventHandler.java file:

package com.tutorialspoint;

import org.springframework.context.ApplicationListener;
import org.springframework.context.event.ContextStartedEvent;

public class CStartEventHandler
 implements ApplicationListener<ContextStartedEvent>{

 public void onApplicationEvent(ContextStartedEvent event) {
 System.out.println("ContextStartedEvent Received");
 }
}

Following is the content of the CStopEventHandler.java file:

package com.tutorialspoint;

import org.springframework.context.ApplicationListener;
import org.springframework.context.event.ContextStoppedEvent;

public class CStopEventHandler
 implements ApplicationListener<ContextStoppedEvent>{

 public void onApplicationEvent(ContextStoppedEvent event) {
 System.out.println("ContextStoppedEvent Received");
 }
}

Following is the content of the MainApp.java file:

package com.tutorialspoint;

import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MainApp {
 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new ClassPathXmlApplicationContext("Beans.xml");

 // Let us raise a start event.
 context.start();

 HelloWorld obj = (HelloWorld) context.getBean("helloWorld");

 obj.getMessage();

 // Let us raise a stop event.
 context.stop();
 }
}

Following is the configuration file Beans.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean >
 <property name="message" value="Hello World!"/>
 </bean>

 <bean
 />

 <bean
 />

</beans>

Once you are done with creating source and bean configuration files, let us run the application. If
everything is fine with your application, this will print the following message:

ContextStartedEvent Received
Your Message : Hello World!
ContextStoppedEvent Received

AOP WITH SPRING FRAMEWORKAOP WITH SPRING FRAMEWORK
One of the key components of Spring Framework is the Aspect oriented programming AOP
framework. Aspect Oriented Programming entails breaking down program logic into distinct parts
called so-called concerns. The functions that span multiple points of an application are called
cross-cutting concerns and these cross-cutting concerns are conceptually separate from the
application's business logic. There are various common good examples of aspects like logging,
auditing, declarative transactions, security, and caching etc.

The key unit of modularity in OOP is the class, whereas in AOP the unit of modularity is the aspect.
Dependency Injection helps you decouple your application objects from each other and AOP helps
you decouple cross-cutting concerns from the objects that they affect. AOP is like triggers in
programming languages such as Perl, .NET, Java and others.

Spring AOP module provides interceptors to intercept an application, for example, when a method
is executed, you can add extra functionality before or after the method execution.

AOP Terminologies:
Before we start working with AOP, let us become familiar with the AOP concepts and terminology.
These terms are not specific to Spring, rather they are related to AOP.

Terms Description

Aspect A module which has a set of APIs providing cross-cutting requirements.
For example, a logging module would be called AOP aspect for logging.
An application can have any number of aspects depending on the
requirement.

Join point This represents a point in your application where you can plug-in AOP
aspect. You can also say, it is the actual place in the application where
an action will be taken using Spring AOP framework.

Advice This is the actual action to be taken either before or after the method
execution. This is actual piece of code that is invoked during program
execution by Spring AOP framework.

Pointcut This is a set of one or more joinpoints where an advice should be
executed. You can specify pointcuts using expressions or patterns as
we will see in our AOP examples.

Introduction An introduction allows you to add new methods or attributes to existing
classes.

Target object The object being advised by one or more aspects, this object will always
be a proxied object. Also referred to as the advised object.

Weaving Weaving is the process of linking aspects with other application types or
objects to create an advised object. This can be done at compile time,
load time, or at runtime.

Types of Advice
Spring aspects can work with five kinds of advice mentioned below:

Advice Description

before Run advice before the a method execution.

after Run advice after the a method execution regardless of its outcome.

after-returning Run advice after the a method execution only if method completes
successfully.

after-throwing Run advice after the a method execution only if method exits by
throwing an exception.

around Run advice before and after the advised method is invoked.

Custom Aspects Implementation
Spring supports the @AspectJ annotation style approach and the schema-based approach to
implement custom aspects. These two approaches have been explained in detail in the following
two sub chapters

Approach Description

XML Schema based Aspects are implemented using regular classes along with XML based
configuration.

@AspectJ based @AspectJ refers to a style of declaring aspects as regular Java classes
annotated with Java 5 annotations.

JDBC FRAMEWORK OVERVIEWJDBC FRAMEWORK OVERVIEW
While working with database using plain old JDBC, it becomes cumbersome to write unnecessary
code to handle exceptions, opening and closing database connections etc. But Spring JDBC
Framework takes care of all the low-level details starting from opening the connection, prepare
and execute the SQL statement, process exceptions, handle transactions and finally close the
connection.

So what you have do is just define connection parameters and specify the SQL statement to be
executed and do the required work for each iteration while fetching data from the database.

Spring JDBC provides several approaches and correspondingly different classes to interface with
the database. I'm going to take classic and the most popular approach which makes use of

/spring/schema_based_aop_appoach.htm
/spring/aspectj_based_aop_appoach.htm

JdbcTemplate class of the framework. This is the central framework class that manages all the
database communication and exception handling.

JdbcTemplate Class
The JdbcTemplate class executes SQL queries, update statements and stored procedure calls,
performs iteration over ResultSets and extraction of returned parameter values. It also catches
JDBC exceptions and translates them to the generic, more informative, exception hierarchy
defined in the org.springframework.dao package.

Instances of the JdbcTemplate class are threadsafe once configured. So you can configure a single
instance of a JdbcTemplate and then safely inject this shared reference into multiple DAOs.

A common practice when using the JdbcTemplate class is to configure a DataSource in your Spring
configuration file, and then dependency-inject that shared DataSource bean into your DAO
classes, and the JdbcTemplate is created in the setter for the DataSource.

Configuring Data Source
Let us create a database table Student in our database TEST. I assume you are working with
MySQL database, if you work with any other database then you can change your DDL and SQL
queries accordingly.

CREATE TABLE Student(
 ID INT NOT NULL AUTO_INCREMENT,
 NAME VARCHAR(20) NOT NULL,
 AGE INT NOT NULL,
 PRIMARY KEY (ID)
);

Now we need to supply a DataSource to the JdbcTemplate so it can configure itself to get database
access. You can configure the DataSource in the XML file with a piece of code as shown below:

<bean
>
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url" value="jdbc:mysql://localhost:3306/TEST"/>
 <property name="username" value="root"/>
 <property name="password" value="password"/>
</bean>

Data Access Object DAO

DAO stands for data access object which is commonly used for database interaction. DAOs exist to
provide a means to read and write data to the database and they should expose this functionality
through an interface by which the rest of the application will access them.

The Data Access Object DAO support in Spring makes it easy to work with data access technologies
like JDBC, Hibernate, JPA or JDO in a consistent way.

Executing SQL statements
Let us see how we can perform CRUD Create, Read, UpdateandDelete operation on database tables using
SQL and jdbcTemplate object.

Querying for an integer:

String SQL = "select count(*) from Student";
int rowCount = jdbcTemplateObject.queryForInt(SQL);

Querying for a long:

String SQL = "select count(*) from Student";
long rowCount = jdbcTemplateObject.queryForLong(SQL);

A simple query using a bind variable:

String SQL = "select age from Student where id = ?";
int age = jdbcTemplateObject.queryForInt(SQL, new Object[]{10});

Querying for a String:

String SQL = "select name from Student where id = ?";
String name = jdbcTemplateObject.queryForObject(SQL, new Object[]{10}, String.class);

Querying and returning an object:

String SQL = "select * from Student where id = ?";
Student student = jdbcTemplateObject.queryForObject(SQL,
 new Object[]{10}, new StudentMapper());

public class StudentMapper implements RowMapper<Student> {
 public Student mapRow(ResultSet rs, int rowNum) throws SQLException {
 Student student = new Student();
 student.setID(rs.getInt("id"));
 student.setName(rs.getString("name"));
 student.setAge(rs.getInt("age"));
 return student;
 }
}

Querying and returning multiple objects:

String SQL = "select * from Student";
List<Student> students = jdbcTemplateObject.query(SQL,
 new StudentMapper());

public class StudentMapper implements RowMapper<Student> {
 public Student mapRow(ResultSet rs, int rowNum) throws SQLException {
 Student student = new Student();
 student.setID(rs.getInt("id"));
 student.setName(rs.getString("name"));
 student.setAge(rs.getInt("age"));
 return student;
 }
}

Inserting a row into the table:

String SQL = "insert into Student (name, age) values (?, ?)";
jdbcTemplateObject.update(SQL, new Object[]{"Zara", 11});

Updating a row into the table:

String SQL = "update Student set name = ? where id = ?";
jdbcTemplateObject.update(SQL, new Object[]{"Zara", 10});

Deletng a row from the table:

String SQL = "delete Student where id = ?";
jdbcTemplateObject.update(SQL, new Object[]{20});

Executing DDL Statements
You can use the execute. . method from jdbcTemplate to execute any SQL statements or DDL
statements. Following is an example to use CREATE statement to create a table:

String SQL = "CREATE TABLE Student(" +
 "ID INT NOT NULL AUTO_INCREMENT, " +

 "NAME VARCHAR(20) NOT NULL, " +
 "AGE INT NOT NULL, " +
 "PRIMARY KEY (ID));"

jdbcTemplateObject.execute(SQL);
Loading [MathJax]/jax/output/HTML-CSS/jax.js

