SPRING FRAMEWORK - OVERVIEW

Spring is the most popular application development framework for enterprise Java. Millions of
developers around the world use Spring Framework to create high performing, easily testable,
reusable code.

Spring framework is an open source Java platform and it was initially written by Rod Johnson and
was first released under the Apache 2.0 license in June 2003.

Spring is lightweight when it comes to size and transparency. The basic version of spring
framework is around 2MB.

The core features of the Spring Framework can be used in developing any Java application, but
there are extensions for building web applications on top of the Java EE platform. Spring
framework targets to make J2EE development easier to use and promote good programming
practice by enabling a POJO-based programming model.

Benefits of Using Spring Framework:
Following is the list of few of the great benefits of using Spring Framework:

e Spring enables developers to develop enterprise-class applications using POJOs. The benefit
of using only POJOs is that you do not need an EJB container product such as an application
server but you have the option of using only a robust servlet container such as Tomcator
some commercial product.

e Spring is organized in a modular fashion. Even though the number of packages and classes
are substantial, you have to worry only about ones you need and ignore the rest.

e Spring does not reinvent the wheel instead, it truly makes use of some of the existing
technologies like several ORM frameworks, logging frameworks, JEE, Quartz and JDK timers,
other view technologies.

e Testing an application written with Spring is simple because environment-dependent code is
moved into this framework. Furthermore, by using JavaBean-style POJOs, it becomes easier to
use dependency injection for injecting test data.

e Spring's web framework is a well-designed web MVC framework, which provides a great
alternative to web frameworks such as Struts or other over engineered or less popular web
frameworks.

e Spring provides a convenient API to translate technology-specific exceptions
thrownbyJDBC, Hibernate, orJDO, forexample into consistent, unchecked exceptions.

e Lightweight loC containers tend to be lightweight, especially when compared to EJB
containers, for example. This is beneficial for developing and deploying applications on
computers with limited memory and CPU resources.

e Spring provides a consistent transaction management interface that can scale down to a
local transaction usingasingledatabase, forexample and scale up to global transactions
usingJTA, forexample.

Dependency Injection DI:

The technology that Spring is most identified with is the Dependency Injection DI flavor of
Inversion of Control. The Inversion of Control IoC is a general concept, and it can be expressed in
many different ways and Dependency Injection is merely one concrete example of Inversion of
Control.

When writing a complex Java application, application classes should be as independent as possible
of other Java classes to increase the possibility to reuse these classes and to test them
independently of other classes while doing unit testing. Dependency Injection helps in gluing these
classes together and same time keeping them independent.


http://www.tutorialspoint.com/spring/spring_overview.htm

What is dependency injection exactly? Let's look at these two words separately. Here the
dependency part translates into an association between two classes. For example, class A is
dependent on class B. Now, let's look at the second part, injection. All this means is that class B will
get injected into class A by the loC.

Dependency injection can happen in the way of passing parameters to the constructor or by post-
construction using setter methods. As Dependency Injection is the heart of Spring Framework, so |
will explain this conceptin a separate chapter with a nice example.

Aspect Oriented Programming AOP:

One of the key components of Spring is the Aspect oriented programming AOP framework. The
functions that span multiple points of an application are called cross-cutting concerns and these
cross-cutting concerns are conceptually separate from the application's business logic. There are
various common good examples of aspects including logging, declarative transactions, security,
and caching etc.

The key unit of modularity in OOP is the class, whereas in AOP the unit of modularity is the aspect.
Whereas DI helps you decouple your application objects from each other, AOP helps you decouple
cross-cutting concerns from the objects that they affect.

The AOP module of Spring Framework provides aspect-oriented programming implementation
allowing you to define method-interceptors and pointcuts to cleanly decouple code that
implements functionality that should be separated. | will discuss more about Spring AOP concepts

in 2 canarata ~rhantar

Loading [Math)ax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js



