
http://www.tutorialspoint.com/spring/spring_mvc_form_handling_example.htm Copyright © tutorialspoint.com

SPRING MVC FORM HANDLING EXAMPLESPRING MVC FORM HANDLING EXAMPLE

The following example show how to write a simple web based application which makes use of
HTML forms using Spring Web MVC framework. To start with it, let us have working Eclipse IDE in
place and follow the following steps to develope a Dynamic Form based Web Application using
Spring Web Framework:

Step Description

1 Create a Dynamic Web Project with a name HelloWeb and create a package
com.tutorialspoint under the src folder in the created project.

2 Drag and drop below mentioned Spring and other libraries into the folder
WebContent/WEB-INF/lib.

3 Create a Java classes Student and StudentController under the com.tutorialspoint
package.

4 Create Spring configuration files Web.xml and HelloWeb-servlet.xml under the
WebContent/WEB-INF folder.

5 Create a sub-folder with a name jsp under the WebContent/WEB-INF folder. Create a
view files student.jsp and result.jsp under this sub-folder.

6 The final step is to create the content of all the source and configuration files and export
the application as explained below.

Here is the content of Student.java file:

package com.tutorialspoint;

public class Student {
   private Integer age;
   private String name;
   private Integer id;

   public void setAge(Integer age) {
      this.age = age;
   }
   public Integer getAge() {
      return age;
   }

   public void setName(String name) {
      this.name = name;
   }
   public String getName() {
      return name;
   }

   public void setId(Integer id) {
      this.id = id;
   }
   public Integer getId() {
      return id;
   }
}

Following is the content of StudentController.java file:

package com.tutorialspoint;

http://www.tutorialspoint.com/spring/spring_mvc_form_handling_example.htm


import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.ui.ModelMap;

@Controller
public class StudentController {

   @RequestMapping(value = "/student", method = RequestMethod.GET)
   public ModelAndView student() {
      return new ModelAndView("student", "command", new Student());
   }
   
   @RequestMapping(value = "/addStudent", method = RequestMethod.POST)
   public String addStudent(@ModelAttribute("SpringWeb")Student student, 
   ModelMap model) {
      model.addAttribute("name", student.getName());
      model.addAttribute("age", student.getAge());
      model.addAttribute("id", student.getId());
      
      return "result";
   }
}

Here the first service method student, we have passed a blank Student object in the
ModelAndView object with name "command" because the spring framework expects an object with
name "command" if you are using <form:form> tags in your JSP file. So when student method is
called it returns student.jsp view.

Second service method addStudent will be called against a POST method on the
HelloWeb/addStudent URL. You will prepare your model object based on the submitted
information. Finally a "result" view will be returned from the service method, which will result in
rendering result.jsp

Following is the content of Spring Web configuration file web.xml

<web-app 
    xmlns="http://java.sun.com/xml/ns/j2ee" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee 
    http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 
    <display-name>Spring MVC Form Handling</display-name>
 
    <servlet>
        <servlet-name>HelloWeb</servlet-name>
        <servlet-class>
           org.springframework.web.servlet.DispatcherServlet
        </servlet-class>
        <load-on-startup>1</load-on-startup>
    </servlet>

    <servlet-mapping>
        <servlet-name>HelloWeb</servlet-name>
        <url-pattern>/</url-pattern>
    </servlet-mapping>
 
</web-app>

Following is the content of another Spring Web configuration file HelloWeb-servlet.xml

<beans xmlns="http://www.springframework.org/schema/beans"
   xmlns:context="http://www.springframework.org/schema/context"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="



   http://www.springframework.org/schema/beans     
   http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
   http://www.springframework.org/schema/context 
   http://www.springframework.org/schema/context/spring-context-3.0.xsd">

   <context:component-scan base-package="com.tutorialspoint" />

   <bean >
      <property name="prefix" value="/WEB-INF/jsp/" />
      <property name="suffix" value=".jsp" />
   </bean>
 
</beans>

Following is the content of Spring view file student.jsp

<%@taglib uri="http://www.springframework.org/tags/form" prefix="form"%>
<html>
<head>
    <title>Spring MVC Form Handling</title>
</head>
<body>

<h2>Student Information</h2>
<form:form method="POST" action="/HelloWeb/addStudent">
   <table>
    <tr>
        <td><form:label path="name">Name</form:label></td>
        <td><form:input path="name" /></td>
    </tr>
    <tr>
        <td><form:label path="age">Age</form:label></td>
        <td><form:input path="age" /></td>
    </tr>
    <tr>
        <td><form:label path="id">id</form:label></td>
        <td><form:input path="id" /></td>
    </tr>
    <tr>
        <td colspan="2">
            <input type="submit" value="Submit"/>
        </td>
    </tr>
</table>  
</form:form>
</body>
</html>

Following is the content of Spring view file result.jsp

<%@taglib uri="http://www.springframework.org/tags/form" prefix="form"%>
<html>
<head>
    <title>Spring MVC Form Handling</title>
</head>
<body>

<h2>Submitted Student Information</h2>
   <table>
    <tr>
        <td>Name</td>
        <td>${name}</td>
    </tr>
    <tr>
        <td>Age</td>
        <td>${age}</td>
    </tr>
    <tr>



        <td>ID</td>
        <td>${id}</td>
    </tr>
</table>  
</body>
</html>

Finally, following is the list of Spring and other libraries to be included in your web application. You
simply drag these files and drop them in WebContent/WEB-INF/lib folder.

commons-logging-x.y.z.jar

org.springframework.asm-x.y.z.jar

org.springframework.beans-x.y.z.jar

org.springframework.context-x.y.z.jar

org.springframework.core-x.y.z.jar

org.springframework.expression-x.y.z.jar

org.springframework.web.servlet-x.y.z.jar

org.springframework.web-x.y.z.jar

spring-web.jar

Once you are done with creating source and configuration files, export your application. Right click
on your application and use Export > WAR File option and save your SpringWeb.war file in
Tomcat's webapps folder.

Now start your Tomcat server and make sure you are able to access other web pages from
webapps folder using a standard browser. Now try a URL
http://localhost:8080/SpringWeb/student and you should see the following result if everything
is fine with your Spring Web Application:

After submitting required information click on submit button to submit the form. You should see
the following result if everything is fine with your Spring Web Application:



Loading [MathJax]/jax/output/HTML-CSS/jax.js


