
http://www.tutorialspoint.com/spring/spring_bean_post_processors.htm Copyright © tutorialspoint.com

SPRING - BEAN POST PROCESSORSSPRING - BEAN POST PROCESSORS

The BeanPostProcessor interface defines callback methods that you can implement to provide
your own instantiation logic, dependency-resolution logic etc. You can also implement some
custom logic after the Spring container finishes instantiating, configuring, and initializing a bean by
plugging in one or more BeanPostProcessor implementations.

You can configure multiple BeanPostProcessor interfaces and you can control the order in which
these BeanPostProcessor interfaces execute by setting the order property provided the
BeanPostProcessor implements the Ordered interface.

The BeanPostProcessors operate on bean orobject instances which means that the Spring IoC
container instantiates a bean instance and then BeanPostProcessor interfaces do their work.

An ApplicationContext automatically detects any beans that are defined with implementation of
the BeanPostProcessor interface and registers these beans as post-processors, to be then called
appropriately by the container upon bean creation.

Example:
The following examples show how to write, register, and use BeanPostProcessors in the context of
an ApplicationContext.

Let us have working Eclipse IDE in place and follow the following steps to create a Spring
application:

Step Description

1 Create a project with a name SpringExample and create a package com.tutorialspoint
under the src folder in the created project.

2 Add required Spring libraries using Add External JARs option as explained in the Spring
Hello World Example chapter.

3 Create Java classes HelloWorld, InitHelloWorld and MainApp under the
com.tutorialspoint package.

4 Create Beans configuration file Beans.xml under the src folder.

5 The final step is to create the content of all the Java files and Bean Configuration file and
run the application as explained below.

Here is the content of HelloWorld.java file:

package com.tutorialspoint;

public class HelloWorld {
 private String message;

 public void setMessage(String message){
 this.message = message;
 }

 public void getMessage(){
 System.out.println("Your Message : " + message);
 }

 public void init(){
 System.out.println("Bean is going through init.");
 }

http://www.tutorialspoint.com/spring/spring_bean_post_processors.htm

 public void destroy(){
 System.out.println("Bean will destroy now.");
 }
}

This is very basic example of implementing BeanPostProcessor, which prints a bean name before
and after initialization of any bean. You can implement more complex logic before and after
instantiating a bean because you have access on bean object inside both the post processor
methods.

Here is the content of InitHelloWorld.java file:

package com.tutorialspoint;

import org.springframework.beans.factory.config.BeanPostProcessor;
import org.springframework.beans.BeansException;

public class InitHelloWorld implements BeanPostProcessor {

 public Object postProcessBeforeInitialization(Object bean, String beanName) throws
BeansException {
 System.out.println("BeforeInitialization : " + beanName);
 return bean; // you can return any other object as well
 }

 public Object postProcessAfterInitialization(Object bean, String beanName) throws
BeansException {
 System.out.println("AfterInitialization : " + beanName);
 return bean; // you can return any other object as well
 }

}

Following is the content of the MainApp.java file. Here you need to register a shutdown hook
registerShutdownHook method that is declared on the AbstractApplicationContext class. This
will ensures a graceful shutdown and calls the relevant destroy methods.

package com.tutorialspoint;

import org.springframework.context.support.AbstractApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MainApp {
 public static void main(String[] args) {

 AbstractApplicationContext context = new
ClassPathXmlApplicationContext("Beans.xml");

 HelloWorld obj = (HelloWorld) context.getBean("helloWorld");
 obj.getMessage();
 context.registerShutdownHook();
 }
}

Following is the configuration file Beans.xml required for init and destroy methods:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean
 init-method="init" destroy-method="destroy">
 <property name="message" value="Hello World!"/>
 </bean>

 <bean />

</beans>

Once you are done with creating source and bean configuration files, let us run the application. If
everything is fine with your application, this will print the following message:

BeforeInitialization : helloWorld
Bean is going through init.
AfterInitialization : helloWorld
Your Message : Hello World!
Bean will destroy now.

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

